# coding: utf8 from __future__ import unicode_literals from ...symbols import NOUN, PROPN, PRON def noun_chunks(obj): """ Detect base noun phrases from a dependency parse. Works on both Doc and Span. """ labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj', 'attr', 'ROOT'] doc = obj.doc # Ensure works on both Doc and Span. np_deps = [doc.vocab.strings.add(label) for label in labels] conj = doc.vocab.strings.add('conj') np_label = doc.vocab.strings.add('NP') seen = set() for i, word in enumerate(obj): if word.pos not in (NOUN, PROPN, PRON): continue # Prevent nested chunks from being produced if word.i in seen: continue if word.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i+1)) yield word.left_edge.i, word.i+1, np_label elif word.dep == conj: head = word.head while head.dep == conj and head.head.i < head.i: head = head.head # If the head is an NP, and we're coordinated to it, we're an NP if head.dep in np_deps: if any(w.i in seen for w in word.subtree): continue seen.update(j for j in range(word.left_edge.i, word.i+1)) yield word.left_edge.i, word.i+1, np_label SYNTAX_ITERATORS = { 'noun_chunks': noun_chunks }