import pytest from thinc.api import Config from spacy import util from spacy.lang.en import English from spacy.language import Language from spacy.pipeline.span_finder import span_finder_default_config from spacy.tokens import Doc from spacy.training import Example from spacy.util import fix_random_seed, make_tempdir, registry SPANS_KEY = "pytest" TRAIN_DATA = [ ("Who is Shaka Khan?", {"spans": {SPANS_KEY: [(7, 17)]}}), ( "I like London and Berlin.", {"spans": {SPANS_KEY: [(7, 13), (18, 24)]}}, ), ] TRAIN_DATA_OVERLAPPING = [ ("Who is Shaka Khan?", {"spans": {SPANS_KEY: [(7, 17)]}}), ( "I like London and Berlin", {"spans": {SPANS_KEY: [(7, 13), (18, 24), (7, 24)]}}, ), ("", {"spans": {SPANS_KEY: []}}), ] def make_examples(nlp, data=TRAIN_DATA): train_examples = [] for t in data: eg = Example.from_dict(nlp.make_doc(t[0]), t[1]) train_examples.append(eg) return train_examples @pytest.mark.parametrize( "tokens_predicted, tokens_reference, reference_truths", [ ( ["Mon", ".", "-", "June", "16"], ["Mon.", "-", "June", "16"], [(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)], ), ( ["Mon.", "-", "J", "une", "16"], ["Mon.", "-", "June", "16"], [(0, 0), (0, 0), (1, 0), (0, 1), (0, 0)], ), ( ["Mon", ".", "-", "June", "16"], ["Mon.", "-", "June", "1", "6"], [(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)], ), ( ["Mon.", "-J", "un", "e 16"], ["Mon.", "-", "June", "16"], [(0, 0), (0, 0), (0, 0), (0, 0)], ), pytest.param( ["Mon.-June", "16"], ["Mon.", "-", "June", "16"], [(0, 1), (0, 0)], ), pytest.param( ["Mon.-", "June", "16"], ["Mon.", "-", "J", "une", "16"], [(0, 0), (1, 1), (0, 0)], ), pytest.param( ["Mon.-", "June 16"], ["Mon.", "-", "June", "16"], [(0, 0), (1, 0)], ), ], ) def test_loss_alignment_example(tokens_predicted, tokens_reference, reference_truths): nlp = Language() predicted = Doc( nlp.vocab, words=tokens_predicted, spaces=[False] * len(tokens_predicted) ) reference = Doc( nlp.vocab, words=tokens_reference, spaces=[False] * len(tokens_reference) ) example = Example(predicted, reference) example.reference.spans[SPANS_KEY] = [example.reference.char_span(5, 9)] span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY}) nlp.initialize() ops = span_finder.model.ops if predicted.text != reference.text: with pytest.raises( ValueError, match="must match between reference and predicted" ): span_finder._get_aligned_truth_scores([example], ops) return truth_scores, masks = span_finder._get_aligned_truth_scores([example], ops) assert len(truth_scores) == len(tokens_predicted) ops.xp.testing.assert_array_equal(truth_scores, ops.xp.asarray(reference_truths)) def test_span_finder_model(): nlp = Language() docs = [nlp("This is an example."), nlp("This is the second example.")] docs[0].spans[SPANS_KEY] = [docs[0][3:4]] docs[1].spans[SPANS_KEY] = [docs[1][3:5]] total_tokens = 0 for doc in docs: total_tokens += len(doc) config = Config().from_str(span_finder_default_config).interpolate() model = registry.resolve(config)["model"] model.initialize(X=docs) predictions = model.predict(docs) assert len(predictions) == total_tokens assert len(predictions[0]) == 2 def test_span_finder_component(): nlp = Language() docs = [nlp("This is an example."), nlp("This is the second example.")] docs[0].spans[SPANS_KEY] = [docs[0][3:4]] docs[1].spans[SPANS_KEY] = [docs[1][3:5]] span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY}) nlp.initialize() docs = list(span_finder.pipe(docs)) assert SPANS_KEY in docs[0].spans @pytest.mark.parametrize( "min_length, max_length, span_count", [(0, 0, 0), (None, None, 8), (2, None, 6), (None, 1, 2), (2, 3, 2)], ) def test_set_annotations_span_lengths(min_length, max_length, span_count): nlp = Language() doc = nlp("Me and Jenny goes together like peas and carrots.") if min_length == 0 and max_length == 0: with pytest.raises(ValueError, match="Both 'min_length' and 'max_length'"): span_finder = nlp.add_pipe( "span_finder", config={ "max_length": max_length, "min_length": min_length, "spans_key": SPANS_KEY, }, ) return span_finder = nlp.add_pipe( "span_finder", config={ "max_length": max_length, "min_length": min_length, "spans_key": SPANS_KEY, }, ) nlp.initialize() # Starts [Me, Jenny, peas] # Ends [Jenny, peas, carrots] scores = [ (1, 0), (0, 0), (1, 1), (0, 0), (0, 0), (0, 0), (1, 1), (0, 0), (0, 1), (0, 0), ] span_finder.set_annotations([doc], scores) assert doc.spans[SPANS_KEY] assert len(doc.spans[SPANS_KEY]) == span_count # Assert below will fail when max_length is set to 0 if max_length is None: max_length = float("inf") if min_length is None: min_length = 1 assert all(min_length <= len(span) <= max_length for span in doc.spans[SPANS_KEY]) def test_overfitting_IO(): # Simple test to try and quickly overfit the span_finder component - ensuring the ML models work correctly fix_random_seed(0) nlp = English() span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY}) train_examples = make_examples(nlp) optimizer = nlp.initialize(get_examples=lambda: train_examples) assert span_finder.model.get_dim("nO") == 2 for i in range(50): losses = {} nlp.update(train_examples, sgd=optimizer, losses=losses) assert losses["span_finder"] < 0.001 # test the trained model test_text = "I like London and Berlin" doc = nlp(test_text) spans = doc.spans[SPANS_KEY] assert len(spans) == 3 assert set([span.text for span in spans]) == { "London", "Berlin", "London and Berlin", } # Also test the results are still the same after IO with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) nlp2 = util.load_model_from_path(tmp_dir) doc2 = nlp2(test_text) spans2 = doc2.spans[SPANS_KEY] assert len(spans2) == 3 assert set([span.text for span in spans2]) == { "London", "Berlin", "London and Berlin", } # Test scoring scores = nlp.evaluate(train_examples) assert f"span_finder_{SPANS_KEY}_f" in scores # It's not perfect 1.0 F1 because it's designed to overgenerate for now. assert scores[f"span_finder_{SPANS_KEY}_p"] == 0.75 assert scores[f"span_finder_{SPANS_KEY}_r"] == 1.0 # also test that the spancat works for just a single entity in a sentence doc = nlp("London") assert len(doc.spans[SPANS_KEY]) == 1