from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple from ..tokens import Doc, Span from ..vocab import Vocab from .alignment import Alignment def annotations_to_doc( vocab: Vocab, tok_annot: Dict[str, Any], doc_annot: Dict[str, Any], ) -> Doc: ... def validate_distillation_examples( examples: Iterable[Example], method: str, ) -> None: ... def validate_examples( examples: Iterable[Example], method: str, ) -> None: ... def validate_get_examples( get_examples: Callable[[], Iterable[Example]], method: str, ): ... class Example: x: Doc y: Doc def __init__( self, predicted: Doc, reference: Doc, *, alignment: Optional[Alignment] = None, ): ... def __len__(self) -> int: ... @property def predicted(self) -> Doc: ... @predicted.setter def predicted(self, doc: Doc) -> None: ... @property def reference(self) -> Doc: ... @reference.setter def reference(self, doc: Doc) -> None: ... def copy(self) -> Example: ... @classmethod def from_dict(cls, predicted: Doc, example_dict: Dict[str, Any]) -> Example: ... @property def alignment(self) -> Alignment: ... def get_aligned(self, field: str, as_string=False): ... def get_aligned_parse(self, projectivize=True): ... def get_aligned_sent_starts(self): ... def get_aligned_spans_x2y( self, x_spans: Iterable[Span], allow_overlap=False ) -> List[Span]: ... def get_aligned_spans_y2x( self, y_spans: Iterable[Span], allow_overlap=False ) -> List[Span]: ... def get_aligned_ents_and_ner(self) -> Tuple[List[Span], List[str]]: ... def get_aligned_ner(self) -> List[str]: ... def get_matching_ents(self, check_label: bool = True) -> List[Span]: ... def to_dict(self) -> Dict[str, Any]: ... def split_sents(self) -> List[Example]: ... @property def text(self) -> str: ... def __str__(self) -> str: ... def __repr__(self) -> str: ... def _parse_example_dict_data(example_dict): ... def _fix_legacy_dict_data(example_dict): ...