# cython: infer_types=True # coding: utf-8 from __future__ import unicode_literals from cpython.ref cimport Py_INCREF from cymem.cymem cimport Pool from thinc.typedefs cimport weight_t from thinc.extra.search cimport Beam from collections import OrderedDict, Counter import srsly from . cimport _beam_utils from ..tokens.doc cimport Doc from ..structs cimport TokenC from .stateclass cimport StateClass from ..typedefs cimport attr_t from ..errors import Errors from .. import util cdef weight_t MIN_SCORE = -90000 class OracleError(Exception): pass cdef void* _init_state(Pool mem, int length, void* tokens) except NULL: cdef StateC* st = new StateC(<const TokenC*>tokens, length) return <void*>st cdef class TransitionSystem: def __init__(self, StringStore string_table, labels_by_action=None, min_freq=None): self.mem = Pool() self.strings = string_table self.n_moves = 0 self._size = 100 self.c = <Transition*>self.mem.alloc(self._size, sizeof(Transition)) self.labels = {} if labels_by_action: self.initialize_actions(labels_by_action, min_freq=min_freq) self.root_label = self.strings.add('ROOT') self.init_beam_state = _init_state def __reduce__(self): return (self.__class__, (self.strings, self.labels), None, None) def init_batch(self, docs): cdef StateClass state states = [] offset = 0 for doc in docs: state = StateClass(doc, offset=offset) self.initialize_state(state.c) states.append(state) offset += len(doc) return states def init_beams(self, docs, beam_width, beam_density=0.): cdef Doc doc beams = [] cdef int offset = 0 for doc in docs: beam = Beam(self.n_moves, beam_width, min_density=beam_density) beam.initialize(self.init_beam_state, doc.length, doc.c) for i in range(beam.width): state = <StateC*>beam.at(i) state.offset = offset offset += len(doc) beam.check_done(_beam_utils.check_final_state, NULL) beams.append(beam) return beams def get_oracle_sequence(self, doc, GoldParse gold): cdef Pool mem = Pool() costs = <float*>mem.alloc(self.n_moves, sizeof(float)) is_valid = <int*>mem.alloc(self.n_moves, sizeof(int)) cdef StateClass state = StateClass(doc, offset=0) self.initialize_state(state.c) history = [] while not state.is_final(): self.set_costs(is_valid, costs, state, gold) for i in range(self.n_moves): if is_valid[i] and costs[i] <= 0: action = self.c[i] history.append(i) action.do(state.c, action.label) break else: raise ValueError(Errors.E024) return history def apply_transition(self, StateClass state, name): if not self.is_valid(state, name): raise ValueError( "Cannot apply transition {name}: invalid for the current state.".format(name=name)) action = self.lookup_transition(name) action.do(state.c, action.label) cdef int initialize_state(self, StateC* state) nogil: pass cdef int finalize_state(self, StateC* state) nogil: pass def finalize_doc(self, doc): pass def preprocess_gold(self, GoldParse gold): raise NotImplementedError def is_gold_parse(self, StateClass state, GoldParse gold): raise NotImplementedError cdef Transition lookup_transition(self, object name) except *: raise NotImplementedError cdef Transition init_transition(self, int clas, int move, attr_t label) except *: raise NotImplementedError def is_valid(self, StateClass stcls, move_name): action = self.lookup_transition(move_name) if action.move == 0: return False return action.is_valid(stcls.c, action.label) cdef int set_valid(self, int* is_valid, const StateC* st) nogil: cdef int i for i in range(self.n_moves): is_valid[i] = self.c[i].is_valid(st, self.c[i].label) cdef int set_costs(self, int* is_valid, weight_t* costs, StateClass stcls, GoldParse gold) except -1: cdef int i self.set_valid(is_valid, stcls.c) cdef int n_gold = 0 for i in range(self.n_moves): if is_valid[i]: costs[i] = self.c[i].get_cost(stcls, &gold.c, self.c[i].label) n_gold += costs[i] <= 0 else: costs[i] = 9000 if n_gold <= 0: raise ValueError(Errors.E024) def get_class_name(self, int clas): act = self.c[clas] return self.move_name(act.move, act.label) def initialize_actions(self, labels_by_action, min_freq=None): self.labels = {} self.n_moves = 0 added_labels = [] added_actions = {} for action, label_freqs in sorted(labels_by_action.items()): action = int(action) # Make sure we take a copy here, and that we get a Counter self.labels[action] = Counter() # Have to be careful here: Sorting must be stable, or our model # won't be read back in correctly. sorted_labels = [(f, L) for L, f in label_freqs.items()] sorted_labels.sort() sorted_labels.reverse() for freq, label_str in sorted_labels: if freq < 0: added_labels.append((freq, label_str)) added_actions.setdefault(label_str, []).append(action) else: self.add_action(int(action), label_str) self.labels[action][label_str] = freq added_labels.sort(reverse=True) for freq, label_str in added_labels: for action in added_actions[label_str]: self.add_action(int(action), label_str) self.labels[action][label_str] = freq def add_action(self, int action, label_name): cdef attr_t label_id if not isinstance(label_name, int) and \ not isinstance(label_name, long): label_id = self.strings.add(label_name) else: label_id = label_name # Check we're not creating a move we already have, so that this is # idempotent for trans in self.c[:self.n_moves]: if trans.move == action and trans.label == label_id: return 0 if self.n_moves >= self._size: self._size *= 2 self.c = <Transition*>self.mem.realloc(self.c, self._size * sizeof(self.c[0])) self.c[self.n_moves] = self.init_transition(self.n_moves, action, label_id) self.n_moves += 1 # Add the new (action, label) pair, making up a frequency for it if # necessary. To preserve sort order, the frequency needs to be lower # than previous frequencies. if self.labels.get(action, []): new_freq = min(self.labels[action].values()) else: self.labels[action] = Counter() new_freq = -1 if new_freq > 0: new_freq = 0 self.labels[action][label_name] = new_freq-1 return 1 def to_disk(self, path, **kwargs): with path.open('wb') as file_: file_.write(self.to_bytes(**kwargs)) def from_disk(self, path, **kwargs): with path.open('rb') as file_: byte_data = file_.read() self.from_bytes(byte_data, **kwargs) return self def to_bytes(self, exclude=tuple(), **kwargs): transitions = [] serializers = { 'moves': lambda: srsly.json_dumps(self.labels), 'strings': lambda: self.strings.to_bytes() } exclude = util.get_serialization_exclude(serializers, exclude, kwargs) return util.to_bytes(serializers, exclude) def from_bytes(self, bytes_data, exclude=tuple(), **kwargs): labels = {} deserializers = { 'moves': lambda b: labels.update(srsly.json_loads(b)), 'strings': lambda b: self.strings.from_bytes(b) } exclude = util.get_serialization_exclude(deserializers, exclude, kwargs) msg = util.from_bytes(bytes_data, deserializers, exclude) self.initialize_actions(labels) return self