{# This is a template for training configs used for the quickstart widget in the docs and the init config command. It encodes various best practices and can help generate the best possible configuration, given a user's requirements. #} {%- set use_transformer = (transformer_data and hardware != "cpu") -%} {%- set transformer = transformer_data[optimize] if use_transformer else {} -%} [paths] train = "" dev = "" [system] gpu_allocator = {{ "pytorch" if use_transformer else "" }} [nlp] lang = "{{ lang }}" {%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components %} pipeline = {{ full_pipeline|pprint()|replace("'", '"')|safe }} tokenizer = {"@tokenizers": "spacy.Tokenizer.v1"} [components] {# TRANSFORMER PIPELINE #} {%- if use_transformer -%} [components.transformer] factory = "transformer" [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v1" name = "{{ transformer["name"] }}" tokenizer_config = {"use_fast": true} [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 {% if "tagger" in components %} [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.tagger.model.tok2vec.pooling] @layers = "reduce_mean.v1" {%- endif %} {% if "parser" in components -%} [components.parser] factory = "parser" [components.parser.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 8 hidden_width = 128 maxout_pieces = 3 use_upper = false nO = null [components.parser.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.parser.model.tok2vec.pooling] @layers = "reduce_mean.v1" {%- endif %} {% if "ner" in components -%} [components.ner] factory = "ner" [components.ner.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 3 hidden_width = 64 maxout_pieces = 2 use_upper = false nO = null [components.ner.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 [components.ner.model.tok2vec.pooling] @layers = "reduce_mean.v1" {% endif -%} {# NON-TRANSFORMER PIPELINE #} {% else -%} {%- if hardware == "gpu" -%} # There are no recommended transformer weights available for language '{{ lang }}' # yet, so the pipeline described here is not transformer-based. {%- endif %} [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v1" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = ${components.tok2vec.model.encode.width} rows = {{ 2000 if optimize == "efficiency" else 7000 }} also_embed_subwords = {{ "true" if has_letters else "false" }} also_use_static_vectors = {{ "true" if optimize == "accuracy" else "false" }} [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v1" width = {{ 96 if optimize == "efficiency" else 256 }} depth = {{ 4 if optimize == "efficiency" else 8 }} window_size = 1 maxout_pieces = 3 {% if "tagger" in components %} [components.tagger] factory = "tagger" [components.tagger.model] @architectures = "spacy.Tagger.v1" nO = null [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {%- endif %} {% if "parser" in components -%} [components.parser] factory = "parser" [components.parser.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 8 hidden_width = 128 maxout_pieces = 3 use_upper = true nO = null [components.parser.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {%- endif %} {% if "ner" in components %} [components.ner] factory = "ner" [components.ner.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 6 hidden_width = 64 maxout_pieces = 2 use_upper = true nO = null [components.ner.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} {% endif %} {% endif %} {% for pipe in components %} {% if pipe not in ["tagger", "parser", "ner"] %} {# Other components defined by the user: we just assume they're factories #} [components.{{ pipe }}] factory = "{{ pipe }}" {% endif %} {% endfor %} [corpora] [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = {{ 500 if hardware == "gpu" else 2000 }} [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 [training] {% if use_transformer or optimize == "efficiency" or not word_vectors -%} vectors = null {% else -%} vectors = "{{ word_vectors }}" {% endif -%} {% if use_transformer -%} accumulate_gradient = {{ transformer["size_factor"] }} {% endif %} dev_corpus = "corpora.dev" train_corpus = "corpora.train" [training.optimizer] @optimizers = "Adam.v1" {% if use_transformer -%} [training.optimizer.learn_rate] @schedules = "warmup_linear.v1" warmup_steps = 250 total_steps = 20000 initial_rate = 5e-5 {% endif %} {% if use_transformer %} [training.batcher] @batchers = "spacy.batch_by_padded.v1" discard_oversize = true size = 2000 buffer = 256 {%- else %} [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 {% endif %} [training.score_weights] {%- if "tagger" in components %} tag_acc = {{ (1.0 / components|length)|round(2) }} {%- endif -%} {%- if "parser" in components %} dep_uas = 0.0 dep_las = {{ (1.0 / components|length)|round(2) }} sents_f = 0.0 {%- endif %} {%- if "ner" in components %} ents_f = {{ (1.0 / components|length)|round(2) }} ents_p = 0.0 ents_r = 0.0 {%- endif -%}