import numpy import pytest from numpy.testing import assert_allclose, assert_almost_equal, assert_equal from thinc.api import NumpyOps, get_current_ops from spacy.lang.en import English from spacy.strings import hash_string # type: ignore from spacy.tokenizer import Tokenizer from spacy.tokens import Doc from spacy.training.initialize import convert_vectors from spacy.vectors import Vectors from spacy.vocab import Vocab from ..util import add_vecs_to_vocab, get_cosine, make_tempdir OPS = get_current_ops() @pytest.fixture def strings(): return ["apple", "orange"] @pytest.fixture def vectors(): return [ ("apple", OPS.asarray([1, 2, 3])), ("orange", OPS.asarray([-1, -2, -3])), ("and", OPS.asarray([-1, -1, -1])), ("juice", OPS.asarray([5, 5, 10])), ("pie", OPS.asarray([7, 6.3, 8.9])), ] @pytest.fixture def data(): return numpy.asarray([[0.0, 1.0, 2.0], [3.0, -2.0, 4.0]], dtype="f") @pytest.fixture def most_similar_vectors_data(): return numpy.asarray( [[0.0, 1.0, 2.0], [1.0, -2.0, 4.0], [1.0, 1.0, -1.0], [2.0, 3.0, 1.0]], dtype="f", ) @pytest.fixture def most_similar_vectors_keys(): return ["a", "b", "c", "d"] @pytest.fixture def resize_data(): return numpy.asarray([[0.0, 1.0], [2.0, 3.0]], dtype="f") @pytest.fixture() def vocab(en_vocab, vectors): add_vecs_to_vocab(en_vocab, vectors) return en_vocab @pytest.fixture() def tokenizer_v(vocab): return Tokenizer(vocab, {}, None, None, None) @pytest.mark.issue(1518) def test_issue1518(): """Test vectors.resize() works.""" vectors = Vectors(shape=(10, 10)) vectors.add("hello", row=2) vectors.resize((5, 9)) @pytest.mark.issue(1539) def test_issue1539(): """Ensure vectors.resize() doesn't try to modify dictionary during iteration.""" v = Vectors(shape=(10, 10), keys=[5, 3, 98, 100]) v.resize((100, 100)) @pytest.mark.issue(1807) def test_issue1807(): """Test vocab.set_vector also adds the word to the vocab.""" vocab = Vocab(vectors_name="test_issue1807") assert "hello" not in vocab vocab.set_vector("hello", numpy.ones((50,), dtype="f")) assert "hello" in vocab @pytest.mark.issue(2871) def test_issue2871(): """Test that vectors recover the correct key for spaCy reserved words.""" words = ["dog", "cat", "SUFFIX"] vocab = Vocab(vectors_name="test_issue2871") vocab.vectors.resize(shape=(3, 10)) vector_data = numpy.zeros((3, 10), dtype="f") for word in words: _ = vocab[word] # noqa: F841 vocab.set_vector(word, vector_data[0]) vocab.vectors.name = "dummy_vectors" assert vocab["dog"].rank == 0 assert vocab["cat"].rank == 1 assert vocab["SUFFIX"].rank == 2 assert vocab.vectors.find(key="dog") == 0 assert vocab.vectors.find(key="cat") == 1 assert vocab.vectors.find(key="SUFFIX") == 2 @pytest.mark.issue(3412) def test_issue3412(): data = numpy.asarray([[0, 0, 0], [1, 2, 3], [9, 8, 7]], dtype="f") vectors = Vectors(data=data, keys=["A", "B", "C"]) keys, best_rows, scores = vectors.most_similar( numpy.asarray([[9, 8, 7], [0, 0, 0]], dtype="f") ) assert best_rows[0] == 2 @pytest.mark.issue(4725) def test_issue4725_2(): if isinstance(get_current_ops, NumpyOps): # ensures that this runs correctly and doesn't hang or crash because of the global vectors # if it does crash, it's usually because of calling 'spawn' for multiprocessing (e.g. on Windows), # or because of issues with pickling the NER (cf test_issue4725_1) vocab = Vocab(vectors_name="test_vocab_add_vector") data = numpy.ndarray((5, 3), dtype="f") data[0] = 1.0 data[1] = 2.0 vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) nlp = English(vocab=vocab) nlp.add_pipe("ner") nlp.initialize() docs = ["Kurt is in London."] * 10 for _ in nlp.pipe(docs, batch_size=2, n_process=2): pass def test_init_vectors_with_resize_shape(strings, resize_data): v = Vectors(shape=(len(strings), 3)) v.resize(shape=resize_data.shape) assert v.shape == resize_data.shape assert v.shape != (len(strings), 3) def test_init_vectors_with_resize_data(data, resize_data): v = Vectors(data=data) v.resize(shape=resize_data.shape) assert v.shape == resize_data.shape assert v.shape != data.shape def test_get_vector_resize(strings, data): strings = [hash_string(s) for s in strings] # decrease vector dimension (truncate) v = Vectors(data=data) resized_dim = v.shape[1] - 1 v.resize(shape=(v.shape[0], resized_dim)) for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(data[0, :resized_dim]) assert list(v[strings[1]]) == list(data[1, :resized_dim]) # increase vector dimension (pad with zeros) v = Vectors(data=data) resized_dim = v.shape[1] + 1 v.resize(shape=(v.shape[0], resized_dim)) for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(data[0]) + [0] assert list(v[strings[1]]) == list(data[1]) + [0] def test_init_vectors_with_data(strings, data): v = Vectors(data=data) assert v.shape == data.shape def test_init_vectors_with_shape(strings): v = Vectors(shape=(len(strings), 3)) assert v.shape == (len(strings), 3) assert v.is_full is False def test_get_vector(strings, data): v = Vectors(data=data) strings = [hash_string(s) for s in strings] for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(data[0]) assert list(v[strings[0]]) != list(data[1]) assert list(v[strings[1]]) != list(data[0]) def test_set_vector(strings, data): orig = data.copy() v = Vectors(data=data) strings = [hash_string(s) for s in strings] for i, string in enumerate(strings): v.add(string, row=i) assert list(v[strings[0]]) == list(orig[0]) assert list(v[strings[0]]) != list(orig[1]) v[strings[0]] = data[1] assert list(v[strings[0]]) == list(orig[1]) assert list(v[strings[0]]) != list(orig[0]) def test_vectors_most_similar(most_similar_vectors_data, most_similar_vectors_keys): v = Vectors(data=most_similar_vectors_data, keys=most_similar_vectors_keys) _, best_rows, _ = v.most_similar(v.data, batch_size=2, n=2, sort=True) assert all(row[0] == i for i, row in enumerate(best_rows)) with pytest.raises(ValueError): v.most_similar(v.data, batch_size=2, n=10, sort=True) def test_vectors_most_similar_identical(): """Test that most similar identical vectors are assigned a score of 1.0.""" data = numpy.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) keys, _, scores = v.most_similar(numpy.asarray([[4, 2, 2, 2]], dtype="f")) assert scores[0][0] == 1.0 # not 1.0000002 data = numpy.asarray([[1, 2, 3], [1, 2, 3], [1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) keys, _, scores = v.most_similar(numpy.asarray([[1, 2, 3]], dtype="f")) assert scores[0][0] == 1.0 # not 0.9999999 @pytest.mark.parametrize("text", ["apple and orange"]) def test_vectors_token_vector(tokenizer_v, vectors, text): doc = tokenizer_v(text) assert vectors[0][0] == doc[0].text assert all([a == b for a, b in zip(vectors[0][1], doc[0].vector)]) assert vectors[1][0] == doc[2].text assert all([a == b for a, b in zip(vectors[1][1], doc[2].vector)]) @pytest.mark.parametrize("text", ["apple", "orange"]) def test_vectors_lexeme_vector(vocab, text): lex = vocab[text] assert list(lex.vector) assert lex.vector_norm @pytest.mark.parametrize("text", [["apple", "and", "orange"]]) def test_vectors_doc_vector(vocab, text): doc = Doc(vocab, words=text) assert list(doc.vector) assert doc.vector_norm @pytest.mark.parametrize("text", [["apple", "and", "orange"]]) def test_vectors_span_vector(vocab, text): span = Doc(vocab, words=text)[0:2] assert list(span.vector) assert span.vector_norm @pytest.mark.parametrize("text", ["apple orange"]) def test_vectors_token_token_similarity(tokenizer_v, text): doc = tokenizer_v(text) assert doc[0].similarity(doc[1]) == doc[1].similarity(doc[0]) assert -1.0 < doc[0].similarity(doc[1]) < 1.0 @pytest.mark.parametrize("text1,text2", [("apple", "orange")]) def test_vectors_token_lexeme_similarity(tokenizer_v, vocab, text1, text2): token = tokenizer_v(text1) lex = vocab[text2] assert token.similarity(lex) == lex.similarity(token) assert -1.0 < token.similarity(lex) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_token_span_similarity(vocab, text): doc = Doc(vocab, words=text) assert doc[0].similarity(doc[1:3]) == doc[1:3].similarity(doc[0]) assert -1.0 < doc[0].similarity(doc[1:3]) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_token_doc_similarity(vocab, text): doc = Doc(vocab, words=text) assert doc[0].similarity(doc) == doc.similarity(doc[0]) assert -1.0 < doc[0].similarity(doc) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_lexeme_span_similarity(vocab, text): doc = Doc(vocab, words=text) lex = vocab[text[0]] assert lex.similarity(doc[1:3]) == doc[1:3].similarity(lex) assert -1.0 < doc.similarity(doc[1:3]) < 1.0 @pytest.mark.parametrize("text1,text2", [("apple", "orange")]) def test_vectors_lexeme_lexeme_similarity(vocab, text1, text2): lex1 = vocab[text1] lex2 = vocab[text2] assert lex1.similarity(lex2) == lex2.similarity(lex1) assert -1.0 < lex1.similarity(lex2) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_lexeme_doc_similarity(vocab, text): doc = Doc(vocab, words=text) lex = vocab[text[0]] assert lex.similarity(doc) == doc.similarity(lex) assert -1.0 < lex.similarity(doc) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_span_span_similarity(vocab, text): doc = Doc(vocab, words=text) with pytest.warns(UserWarning): assert doc[0:2].similarity(doc[1:3]) == doc[1:3].similarity(doc[0:2]) assert -1.0 < doc[0:2].similarity(doc[1:3]) < 1.0 @pytest.mark.parametrize("text", [["apple", "orange", "juice"]]) def test_vectors_span_doc_similarity(vocab, text): doc = Doc(vocab, words=text) with pytest.warns(UserWarning): assert doc[0:2].similarity(doc) == doc.similarity(doc[0:2]) assert -1.0 < doc[0:2].similarity(doc) < 1.0 @pytest.mark.parametrize( "text1,text2", [(["apple", "and", "apple", "pie"], ["orange", "juice"])] ) def test_vectors_doc_doc_similarity(vocab, text1, text2): doc1 = Doc(vocab, words=text1) doc2 = Doc(vocab, words=text2) assert doc1.similarity(doc2) == doc2.similarity(doc1) assert -1.0 < doc1.similarity(doc2) < 1.0 def test_vocab_add_vector(): vocab = Vocab(vectors_name="test_vocab_add_vector") data = OPS.xp.ndarray((5, 3), dtype="f") data[0] = 1.0 data[1] = 2.0 vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) cat = vocab["cat"] assert list(cat.vector) == [1.0, 1.0, 1.0] dog = vocab["dog"] assert list(dog.vector) == [2.0, 2.0, 2.0] with pytest.raises(ValueError): vocab.vectors.add(vocab["hamster"].orth, row=1000000) def test_vocab_prune_vectors(): vocab = Vocab(vectors_name="test_vocab_prune_vectors") _ = vocab["cat"] # noqa: F841 _ = vocab["dog"] # noqa: F841 _ = vocab["kitten"] # noqa: F841 data = OPS.xp.ndarray((5, 3), dtype="f") data[0] = OPS.asarray([1.0, 1.2, 1.1]) data[1] = OPS.asarray([0.3, 1.3, 1.0]) data[2] = OPS.asarray([0.9, 1.22, 1.05]) vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) vocab.set_vector("kitten", data[2]) remap = vocab.prune_vectors(2, batch_size=2) assert list(remap.keys()) == ["kitten"] neighbour, similarity = list(remap.values())[0] assert neighbour == "cat", remap cosine = get_cosine(data[0], data[2]) assert_allclose(float(similarity), cosine, atol=1e-4, rtol=1e-3) def test_vectors_serialize(): data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) b = v.to_bytes() v_r = Vectors() v_r.from_bytes(b) assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) assert v.key2row == v_r.key2row v.resize((5, 4)) v_r.resize((5, 4)) row = v.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f")) row_r = v_r.add("D", vector=OPS.asarray([1, 2, 3, 4], dtype="f")) assert row == row_r assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) assert v.is_full == v_r.is_full with make_tempdir() as d: v.to_disk(d) v_r.from_disk(d) assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) assert v.key2row == v_r.key2row v.resize((5, 4)) v_r.resize((5, 4)) row = v.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f")) row_r = v_r.add("D", vector=OPS.asarray([10, 20, 30, 40], dtype="f")) assert row == row_r assert_equal(OPS.to_numpy(v.data), OPS.to_numpy(v_r.data)) def test_vector_is_oov(): vocab = Vocab(vectors_name="test_vocab_is_oov") data = OPS.xp.ndarray((5, 3), dtype="f") data[0] = 1.0 data[1] = 2.0 vocab.set_vector("cat", data[0]) vocab.set_vector("dog", data[1]) assert vocab["cat"].is_oov is False assert vocab["dog"].is_oov is False assert vocab["hamster"].is_oov is True def test_init_vectors_unset(): v = Vectors(shape=(10, 10)) assert v.is_full is False assert v.shape == (10, 10) with pytest.raises(ValueError): v = Vectors(shape=(10, 10), mode="floret") v = Vectors(data=OPS.xp.zeros((10, 10)), mode="floret", hash_count=1) assert v.is_full is True def test_vectors_clear(): data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) assert v.is_full is True assert hash_string("A") in v v.clear() # no keys assert v.key2row == {} assert list(v) == [] assert v.is_full is False assert "A" not in v with pytest.raises(KeyError): v["A"] def test_vectors_get_batch(): data = OPS.asarray([[4, 2, 2, 2], [4, 2, 2, 2], [1, 1, 1, 1]], dtype="f") v = Vectors(data=data, keys=["A", "B", "C"]) # check with mixed int/str keys words = ["C", "B", "A", v.strings["B"]] rows = v.find(keys=words) vecs = OPS.as_contig(v.data[rows]) assert_equal(OPS.to_numpy(vecs), OPS.to_numpy(v.get_batch(words))) @pytest.fixture() def floret_vectors_hashvec_str(): """The full hashvec table from floret with the settings: bucket 10, dim 10, minn 2, maxn 3, hash count 2, hash seed 2166136261, bow <, eow >""" return """10 10 2 3 2 2166136261 < > 0 -2.2611 3.9302 2.6676 -11.233 0.093715 -10.52 -9.6463 -0.11853 2.101 -0.10145 1 -3.12 -1.7981 10.7 -6.171 4.4527 10.967 9.073 6.2056 -6.1199 -2.0402 2 9.5689 5.6721 -8.4832 -1.2249 2.1871 -3.0264 -2.391 -5.3308 -3.2847 -4.0382 3 3.6268 4.2759 -1.7007 1.5002 5.5266 1.8716 -12.063 0.26314 2.7645 2.4929 4 -11.683 -7.7068 2.1102 2.214 7.2202 0.69799 3.2173 -5.382 -2.0838 5.0314 5 -4.3024 8.0241 2.0714 -1.0174 -0.28369 1.7622 7.8797 -1.7795 6.7541 5.6703 6 8.3574 -5.225 8.6529 8.5605 -8.9465 3.767 -5.4636 -1.4635 -0.98947 -0.58025 7 -10.01 3.3894 -4.4487 1.1669 -11.904 6.5158 4.3681 0.79913 -6.9131 -8.687 8 -5.4576 7.1019 -8.8259 1.7189 4.955 -8.9157 -3.8905 -0.60086 -2.1233 5.892 9 8.0678 -4.4142 3.6236 4.5889 -2.7611 2.4455 0.67096 -4.2822 2.0875 4.6274 """ @pytest.fixture() def floret_vectors_vec_str(): """The top 10 rows from floret with the settings above, to verify that the spacy floret vectors are equivalent to the fasttext static vectors.""" return """10 10 , -5.7814 2.6918 0.57029 -3.6985 -2.7079 1.4406 1.0084 1.7463 -3.8625 -3.0565 . 3.8016 -1.759 0.59118 3.3044 -0.72975 0.45221 -2.1412 -3.8933 -2.1238 -0.47409 der 0.08224 2.6601 -1.173 1.1549 -0.42821 -0.097268 -2.5589 -1.609 -0.16968 0.84687 die -2.8781 0.082576 1.9286 -0.33279 0.79488 3.36 3.5609 -0.64328 -2.4152 0.17266 und 2.1558 1.8606 -1.382 0.45424 -0.65889 1.2706 0.5929 -2.0592 -2.6949 -1.6015 " -1.1242 1.4588 -1.6263 1.0382 -2.7609 -0.99794 -0.83478 -1.5711 -1.2137 1.0239 in -0.87635 2.0958 4.0018 -2.2473 -1.2429 2.3474 1.8846 0.46521 -0.506 -0.26653 von -0.10589 1.196 1.1143 -0.40907 -1.0848 -0.054756 -2.5016 -1.0381 -0.41598 0.36982 ( 0.59263 2.1856 0.67346 1.0769 1.0701 1.2151 1.718 -3.0441 2.7291 3.719 ) 0.13812 3.3267 1.657 0.34729 -3.5459 0.72372 0.63034 -1.6145 1.2733 0.37798 """ def test_floret_vectors(floret_vectors_vec_str, floret_vectors_hashvec_str): nlp = English() nlp_plain = English() # load both vec and hashvec tables with make_tempdir() as tmpdir: p = tmpdir / "test.hashvec" with open(p, "w") as fileh: fileh.write(floret_vectors_hashvec_str) convert_vectors(nlp, p, truncate=0, prune=-1, mode="floret") p = tmpdir / "test.vec" with open(p, "w") as fileh: fileh.write(floret_vectors_vec_str) convert_vectors(nlp_plain, p, truncate=0, prune=-1) word = "der" # ngrams: full padded word + padded 2-grams + padded 3-grams ngrams = nlp.vocab.vectors._get_ngrams(word) assert ngrams == ["", "", ""] # rows: 2 rows per ngram rows = OPS.xp.asarray( [ h % nlp.vocab.vectors.shape[0] for ngram in ngrams for h in nlp.vocab.vectors._get_ngram_hashes(ngram) ], dtype="uint32", ) assert_equal( OPS.to_numpy(rows), numpy.asarray([5, 6, 7, 5, 8, 2, 8, 9, 3, 3, 4, 6, 7, 3, 0, 2]), ) assert len(rows) == len(ngrams) * nlp.vocab.vectors.hash_count # all vectors are equivalent for plain static table vs. hash ngrams for word in nlp_plain.vocab.vectors: word = nlp_plain.vocab.strings.as_string(word) assert_almost_equal( nlp.vocab[word].vector, nlp_plain.vocab[word].vector, decimal=3 ) # every word has a vector assert nlp.vocab[word * 5].has_vector # check that single and batched vector lookups are identical words = [s for s in nlp_plain.vocab.vectors] single_vecs = OPS.to_numpy(OPS.asarray([nlp.vocab[word].vector for word in words])) batch_vecs = OPS.to_numpy(nlp.vocab.vectors.get_batch(words)) assert_equal(single_vecs, batch_vecs) # an empty key returns 0s assert_equal( OPS.to_numpy(nlp.vocab[""].vector), numpy.zeros((nlp.vocab.vectors.shape[0],)), ) # an empty batch returns 0s assert_equal( OPS.to_numpy(nlp.vocab.vectors.get_batch([""])), numpy.zeros((1, nlp.vocab.vectors.shape[0])), ) # an empty key within a batch returns 0s assert_equal( OPS.to_numpy(nlp.vocab.vectors.get_batch(["a", "", "b"])[1]), numpy.zeros((nlp.vocab.vectors.shape[0],)), ) # the loaded ngram vector table cannot be modified # except for clear: warning, then return without modifications vector = list(range(nlp.vocab.vectors.shape[1])) orig_bytes = nlp.vocab.vectors.to_bytes(exclude=["strings"]) with pytest.warns(UserWarning): nlp.vocab.set_vector("the", vector) assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) with pytest.warns(UserWarning): nlp.vocab[word].vector = vector assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) with pytest.warns(UserWarning): nlp.vocab.vectors.add("the", row=6) assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) with pytest.warns(UserWarning): nlp.vocab.vectors.resize(shape=(100, 10)) assert orig_bytes == nlp.vocab.vectors.to_bytes(exclude=["strings"]) with pytest.raises(ValueError): nlp.vocab.vectors.clear() # data and settings are serialized correctly with make_tempdir() as d: nlp.vocab.to_disk(d) vocab_r = Vocab() vocab_r.from_disk(d) assert nlp.vocab.vectors.to_bytes() == vocab_r.vectors.to_bytes() assert_equal( OPS.to_numpy(nlp.vocab.vectors.data), OPS.to_numpy(vocab_r.vectors.data) ) assert_equal(nlp.vocab.vectors._get_cfg(), vocab_r.vectors._get_cfg()) assert_almost_equal( OPS.to_numpy(nlp.vocab[word].vector), OPS.to_numpy(vocab_r[word].vector), decimal=6, )