include ../../_includes/_mixins p | This workflow describes how to train new statistical models for spaCy's | part-of-speech tagger, named entity recognizer and dependency parser. | Once the model is trained, you can then | #[+a("/docs/usage/saving-loading") save and load] it. +h(2, "train-pos-tagger") Training the part-of-speech tagger +code. from spacy.vocab import Vocab from spacy.tagger import Tagger from spacy.tokens import Doc from spacy.gold import GoldParse vocab = Vocab(tag_map={'N': {'pos': 'NOUN'}, 'V': {'pos': 'VERB'}}) tagger = Tagger(vocab) doc = Doc(vocab, words=['I', 'like', 'stuff']) gold = GoldParse(doc, tags=['N', 'V', 'N']) tagger.update(doc, gold) tagger.model.end_training() p +button(gh("spaCy", "examples/training/train_tagger.py"), false, "secondary") Full example +h(2, "train-entity") Training the named entity recognizer +code. from spacy.vocab import Vocab from spacy.pipeline import EntityRecognizer from spacy.tokens import Doc from spacy.gold import GoldParse vocab = Vocab() entity = EntityRecognizer(vocab, entity_types=['PERSON', 'LOC']) doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?']) gold = GoldParse(doc, entities=['O', 'O', 'B-PERSON', 'L-PERSON', 'O']) entity.update(doc, gold) entity.model.end_training() p +button(gh("spaCy", "examples/training/train_ner.py"), false, "secondary") Full example +h(2, "extend-entity") Extending the named entity recognizer p | All #[+a("/docs/usage/models") spaCy models] support online learning, so | you can update a pre-trained model with new examples. You can even add | new classes to an existing model, to recognise a new entity type, | part-of-speech, or syntactic relation. Updating an existing model is | particularly useful as a "quick and dirty solution", if you have only a | few corrections or annotations. p.o-inline-list +button(gh("spaCy", "examples/training/train_new_entity_type.py"), true, "secondary") Full example +button("/docs/usage/training-ner", false, "secondary") Usage Workflow +h(2, "train-dependency") Training the dependency parser +code. from spacy.vocab import Vocab from spacy.pipeline import DependencyParser from spacy.tokens import Doc from spacy.gold import GoldParse vocab = Vocab() parser = DependencyParser(vocab, labels=['nsubj', 'compound', 'dobj', 'punct']) doc = Doc(vocab, words=['Who', 'is', 'Shaka', 'Khan', '?']) gold = GoldParse(doc, [1,1,3,1,1], ['nsubj', 'ROOT', 'compound', 'dobj', 'punct']) parser.update(doc, gold) parser.model.end_training() p +button(gh("spaCy", "examples/training/train_parser.py"), false, "secondary") Full example +h(2, "feature-templates") Customizing the feature extraction p | spaCy currently uses linear models for the tagger, parser and entity | recognizer, with weights learned using the | #[+a("https://explosion.ai/blog/part-of-speech-pos-tagger-in-python") Averaged Perceptron algorithm]. +aside("Linear Model Feature Scheme") | For a list of the available feature atoms, see the #[+a("/docs/api/features") Linear Model Feature Scheme]. p | Because it's a linear model, it's important for accuracy to build | conjunction features out of the atomic predictors. Let's say you have | two atomic predictors asking, "What is the part-of-speech of the | previous token?", and "What is the part-of-speech of the previous | previous token?". These predictors will introduce a number of features, | e.g. #[code Prev-pos=NN], #[code Prev-pos=VBZ], etc. A conjunction | template introduces features such as #[code Prev-pos=NN&Prev-pos=VBZ]. p | The feature extraction proceeds in two passes. In the first pass, we | fill an array with the values of all of the atomic predictors. In the | second pass, we iterate over the feature templates, and fill a small | temporary array with the predictors that will be combined into a | conjunction feature. Finally, we hash this array into a 64-bit integer, | using the MurmurHash algorithm. You can see this at work in the | #[+a(gh("thinc", "thinc/linear/features.pyx", "94dbe06fd3c8f24d86ab0f5c7984e52dbfcdc6cb")) #[code thinc.linear.features]] module. p | It's very easy to change the feature templates, to create novel | combinations of the existing atomic predictors. There's currently no API | available to add new atomic predictors, though. You'll have to create a | subclass of the model, and write your own #[code set_featuresC] method. p | The feature templates are passed in using the #[code features] keyword | argument to the constructors of the #[+api("tagger") #[code Tagger]], | #[+api("dependencyparser") #[code DependencyParser]] and | #[+api("entityrecognizer") #[code EntityRecognizer]]: +code. from spacy.vocab import Vocab from spacy.tagger import Tagger from spacy.tagger import P2_orth, P1_orth from spacy.tagger import P2_cluster, P1_cluster, W_orth, N1_orth, N2_orth vocab = Vocab(tag_map={'N': {'pos': 'NOUN'}, 'V': {'pos': 'VERB'}}) tagger = Tagger(vocab, features=[(P2_orth, P2_cluster), (P1_orth, P1_cluster), (P2_orth,), (P1_orth,), (W_orth,), (N1_orth,), (N2_orth,)]) p | Custom feature templates can be passed to the #[code DependencyParser] | and #[code EntityRecognizer] as well, also using the #[code features] | keyword argument of the constructor.