from typing import Optional, List, Dict from timeit import default_timer as timer from wasabi import Printer from pathlib import Path import re import srsly from thinc.api import require_gpu, fix_random_seed from ..gold import Corpus from ..tokens import Doc from ._util import app, Arg, Opt from ..scorer import Scorer from .. import util from .. import displacy @app.command("evaluate") def evaluate_cli( # fmt: off model: str = Arg(..., help="Model name or path"), data_path: Path = Arg(..., help="Location of JSON-formatted evaluation data", exists=True), output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False), gpu_id: int = Opt(-1, "--gpu-id", "-g", help="Use GPU"), gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"), displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False), displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"), # fmt: on ): """ Evaluate a model. To render a sample of parses in a HTML file, set an output directory as the displacy_path argument. """ evaluate( model, data_path, output=output, gpu_id=gpu_id, gold_preproc=gold_preproc, displacy_path=displacy_path, displacy_limit=displacy_limit, silent=False, ) def evaluate( model: str, data_path: Path, output: Optional[Path] = None, gpu_id: int = -1, gold_preproc: bool = False, displacy_path: Optional[Path] = None, displacy_limit: int = 25, silent: bool = True, ) -> Scorer: msg = Printer(no_print=silent, pretty=not silent) fix_random_seed() if gpu_id >= 0: require_gpu(gpu_id) util.set_env_log(False) data_path = util.ensure_path(data_path) output_path = util.ensure_path(output) displacy_path = util.ensure_path(displacy_path) if not data_path.exists(): msg.fail("Evaluation data not found", data_path, exits=1) if displacy_path and not displacy_path.exists(): msg.fail("Visualization output directory not found", displacy_path, exits=1) corpus = Corpus(data_path, data_path) nlp = util.load_model(model) dev_dataset = list(corpus.dev_dataset(nlp, gold_preproc=gold_preproc)) begin = timer() scorer = nlp.evaluate(dev_dataset, verbose=False) end = timer() nwords = sum(len(ex.predicted) for ex in dev_dataset) results = { "Time": f"{end - begin:.2f} s", "Words": nwords, "Words/s": f"{nwords / (end - begin):.0f}", "TOK": f"{scorer.token_acc:.2f}", "TAG": f"{scorer.tags_acc:.2f}", "POS": f"{scorer.pos_acc:.2f}", "MORPH": f"{scorer.morphs_acc:.2f}", "UAS": f"{scorer.uas:.2f}", "LAS": f"{scorer.las:.2f}", "NER P": f"{scorer.ents_p:.2f}", "NER R": f"{scorer.ents_r:.2f}", "NER F": f"{scorer.ents_f:.2f}", "Textcat AUC": f"{scorer.textcat_auc:.2f}", "Textcat F": f"{scorer.textcat_f:.2f}", "Sent P": f"{scorer.sent_p:.2f}", "Sent R": f"{scorer.sent_r:.2f}", "Sent F": f"{scorer.sent_f:.2f}", } data = {re.sub(r"[\s/]", "_", k.lower()): v for k, v in results.items()} msg.table(results, title="Results") if scorer.ents_per_type: data["ents_per_type"] = scorer.ents_per_type print_ents_per_type(msg, scorer.ents_per_type) if scorer.textcats_f_per_cat: data["textcats_f_per_cat"] = scorer.textcats_f_per_cat print_textcats_f_per_cat(msg, scorer.textcats_f_per_cat) if scorer.textcats_auc_per_cat: data["textcats_auc_per_cat"] = scorer.textcats_auc_per_cat print_textcats_auc_per_cat(msg, scorer.textcats_auc_per_cat) if displacy_path: docs = [ex.predicted for ex in dev_dataset] render_deps = "parser" in nlp.meta.get("pipeline", []) render_ents = "ner" in nlp.meta.get("pipeline", []) render_parses( docs, displacy_path, model_name=model, limit=displacy_limit, deps=render_deps, ents=render_ents, ) msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path) if output_path is not None: srsly.write_json(output_path, data) msg.good(f"Saved results to {output_path}") return data def render_parses( docs: List[Doc], output_path: Path, model_name: str = "", limit: int = 250, deps: bool = True, ents: bool = True, ): docs[0].user_data["title"] = model_name if ents: html = displacy.render(docs[:limit], style="ent", page=True) with (output_path / "entities.html").open("w", encoding="utf8") as file_: file_.write(html) if deps: html = displacy.render( docs[:limit], style="dep", page=True, options={"compact": True} ) with (output_path / "parses.html").open("w", encoding="utf8") as file_: file_.write(html) def print_ents_per_type(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None: data = [ (k, f"{v['p']:.2f}", f"{v['r']:.2f}", f"{v['f']:.2f}") for k, v in scores.items() ] msg.table( data, header=("", "P", "R", "F"), aligns=("l", "r", "r", "r"), title="NER (per type)", ) def print_textcats_f_per_cat(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None: data = [ (k, f"{v['p']:.2f}", f"{v['r']:.2f}", f"{v['f']:.2f}") for k, v in scores.items() ] msg.table( data, header=("", "P", "R", "F"), aligns=("l", "r", "r", "r"), title="Textcat F (per type)", ) def print_textcats_auc_per_cat( msg: Printer, scores: Dict[str, Dict[str, float]] ) -> None: msg.table( [(k, f"{v['roc_auc_score']:.2f}") for k, v in scores.items()], header=("", "ROC AUC"), aligns=("l", "r"), title="Textcat ROC AUC (per label)", )