[training] max_steps = 0 patience = 10000 eval_frequency = 200 dropout = 0.2 init_tok2vec = null vectors = "tmp/fasttext_vectors/vocab" max_epochs = 100 orth_variant_level = 0.0 gold_preproc = true max_length = 0 scores = ["tag_acc", "dep_uas", "dep_las", "speed"] score_weights = {"dep_las": 0.8, "tag_acc": 0.2} limit = 0 seed = 0 accumulate_gradient = 1 discard_oversize = false raw_text = null tag_map = null morph_rules = null base_model = null eval_batch_size = 128 use_pytorch_for_gpu_memory = false batch_by = "words" [training.batch_size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 [training.optimizer] @optimizers = "Adam.v1" learn_rate = 0.001 beta1 = 0.9 beta2 = 0.999 [nlp] lang = "en" pipeline = ["tok2vec", "tagger", "parser"] load_vocab_data = false [nlp.tokenizer] @tokenizers = "spacy.Tokenizer.v1" [nlp.lemmatizer] @lemmatizers = "spacy.Lemmatizer.v1" [components] [components.tok2vec] factory = "tok2vec" [components.tagger] factory = "tagger" [components.parser] factory = "parser" learn_tokens = false min_action_freq = 1 [components.tagger.model] @architectures = "spacy.Tagger.v1" [components.tagger.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode:width} [components.parser.model] @architectures = "spacy.TransitionBasedParser.v1" nr_feature_tokens = 8 hidden_width = 64 maxout_pieces = 3 [components.parser.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode:width} [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v1" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v1" width = ${components.tok2vec.model.encode:width} rows = 2000 also_embed_subwords = true also_use_static_vectors = true [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v1" width = 96 depth = 4 window_size = 1 maxout_pieces = 3