# flake8: noqa """Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes .conllu format for development data, allowing the official scorer to be used. """ from __future__ import unicode_literals import plac import tqdm from pathlib import Path import re import sys import srsly import spacy import spacy.util from ...tokens import Token, Doc from ...gold import GoldParse from ...util import compounding, minibatch_by_words from ...syntax.nonproj import projectivize from ...matcher import Matcher # from ...morphology import Fused_begin, Fused_inside from ... import displacy from collections import defaultdict, Counter from timeit import default_timer as timer Fused_begin = None Fused_inside = None import itertools import random import numpy.random from . import conll17_ud_eval from ... import lang from ...lang import zh from ...lang import ja from ...lang import ru ################ # Data reading # ################ space_re = re.compile(r"\s+") def split_text(text): return [space_re.sub(" ", par.strip()) for par in text.split("\n\n")] ############## # Evaluation # ############## def read_conllu(file_): docs = [] sent = [] doc = [] for line in file_: if line.startswith("# newdoc"): if doc: docs.append(doc) doc = [] elif line.startswith("#"): continue elif not line.strip(): if sent: doc.append(sent) sent = [] else: sent.append(list(line.strip().split("\t"))) if len(sent[-1]) != 10: print(repr(line)) raise ValueError if sent: doc.append(sent) if doc: docs.append(doc) return docs def evaluate(nlp, text_loc, gold_loc, sys_loc, limit=None): if text_loc.parts[-1].endswith(".conllu"): docs = [] with text_loc.open() as file_: for conllu_doc in read_conllu(file_): for conllu_sent in conllu_doc: words = [line[1] for line in conllu_sent] docs.append(Doc(nlp.vocab, words=words)) for name, component in nlp.pipeline: docs = list(component.pipe(docs)) else: with text_loc.open("r", encoding="utf8") as text_file: texts = split_text(text_file.read()) docs = list(nlp.pipe(texts)) with sys_loc.open("w", encoding="utf8") as out_file: write_conllu(docs, out_file) with gold_loc.open("r", encoding="utf8") as gold_file: gold_ud = conll17_ud_eval.load_conllu(gold_file) with sys_loc.open("r", encoding="utf8") as sys_file: sys_ud = conll17_ud_eval.load_conllu(sys_file) scores = conll17_ud_eval.evaluate(gold_ud, sys_ud) return docs, scores def write_conllu(docs, file_): merger = Matcher(docs[0].vocab) merger.add("SUBTOK", None, [{"DEP": "subtok", "op": "+"}]) for i, doc in enumerate(docs): matches = merger(doc) spans = [doc[start : end + 1] for _, start, end in matches] offsets = [(span.start_char, span.end_char) for span in spans] for start_char, end_char in offsets: doc.merge(start_char, end_char) # TODO: This shuldn't be necessary? Should be handled in merge for word in doc: if word.i == word.head.i: word.dep_ = "ROOT" file_.write("# newdoc id = {i}\n".format(i=i)) for j, sent in enumerate(doc.sents): file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j)) file_.write("# text = {text}\n".format(text=sent.text)) for k, token in enumerate(sent): file_.write(_get_token_conllu(token, k, len(sent)) + "\n") file_.write("\n") for word in sent: if word.head.i == word.i and word.dep_ == "ROOT": break else: print("Rootless sentence!") print(sent) print(i) for w in sent: print(w.i, w.text, w.head.text, w.head.i, w.dep_) raise ValueError def _get_token_conllu(token, k, sent_len): if token.check_morph(Fused_begin) and (k + 1 < sent_len): n = 1 text = [token.text] while token.nbor(n).check_morph(Fused_inside): text.append(token.nbor(n).text) n += 1 id_ = "%d-%d" % (k + 1, (k + n)) fields = [id_, "".join(text)] + ["_"] * 8 lines = ["\t".join(fields)] else: lines = [] if token.head.i == token.i: head = 0 else: head = k + (token.head.i - token.i) + 1 fields = [ str(k + 1), token.text, token.lemma_, token.pos_, token.tag_, "_", str(head), token.dep_.lower(), "_", "_", ] if token.check_morph(Fused_begin) and (k + 1 < sent_len): if k == 0: fields[1] = token.norm_[0].upper() + token.norm_[1:] else: fields[1] = token.norm_ elif token.check_morph(Fused_inside): fields[1] = token.norm_ elif token._.split_start is not None: split_start = token._.split_start split_end = token._.split_end split_len = (split_end.i - split_start.i) + 1 n_in_split = token.i - split_start.i subtokens = guess_fused_orths(split_start.text, [""] * split_len) fields[1] = subtokens[n_in_split] lines.append("\t".join(fields)) return "\n".join(lines) def guess_fused_orths(word, ud_forms): """The UD data 'fused tokens' don't necessarily expand to keys that match the form. We need orths that exact match the string. Here we make a best effort to divide up the word.""" if word == "".join(ud_forms): # Happy case: we get a perfect split, with each letter accounted for. return ud_forms elif len(word) == sum(len(subtoken) for subtoken in ud_forms): # Unideal, but at least lengths match. output = [] remain = word for subtoken in ud_forms: assert len(subtoken) >= 1 output.append(remain[: len(subtoken)]) remain = remain[len(subtoken) :] assert len(remain) == 0, (word, ud_forms, remain) return output else: # Let's say word is 6 long, and there are three subtokens. The orths # *must* equal the original string. Arbitrarily, split [4, 1, 1] first = word[: len(word) - (len(ud_forms) - 1)] output = [first] remain = word[len(first) :] for i in range(1, len(ud_forms)): assert remain output.append(remain[:1]) remain = remain[1:] assert len(remain) == 0, (word, output, remain) return output def print_results(name, ud_scores): fields = {} if ud_scores is not None: fields.update( { "words": ud_scores["Words"].f1 * 100, "sents": ud_scores["Sentences"].f1 * 100, "tags": ud_scores["XPOS"].f1 * 100, "uas": ud_scores["UAS"].f1 * 100, "las": ud_scores["LAS"].f1 * 100, } ) else: fields.update({"words": 0.0, "sents": 0.0, "tags": 0.0, "uas": 0.0, "las": 0.0}) tpl = "\t".join( (name, "{las:.1f}", "{uas:.1f}", "{tags:.1f}", "{sents:.1f}", "{words:.1f}") ) print(tpl.format(**fields)) return fields def get_token_split_start(token): if token.text == "": assert token.i != 0 i = -1 while token.nbor(i).text == "": i -= 1 return token.nbor(i) elif (token.i + 1) < len(token.doc) and token.nbor(1).text == "": return token else: return None def get_token_split_end(token): if (token.i + 1) == len(token.doc): return token if token.text == "" else None elif token.text != "" and token.nbor(1).text != "": return None i = 1 while (token.i + i) < len(token.doc) and token.nbor(i).text == "": i += 1 return token.nbor(i - 1) ################## # Initialization # ################## def load_nlp(experiments_dir, corpus): nlp = spacy.load(experiments_dir / corpus / "best-model") return nlp def initialize_pipeline(nlp, docs, golds, config, device): nlp.add_pipe(nlp.create_pipe("parser")) return nlp @plac.annotations( test_data_dir=( "Path to Universal Dependencies test data", "positional", None, Path, ), experiment_dir=("Parent directory with output model", "positional", None, Path), corpus=( "UD corpus to evaluate, e.g. UD_English, UD_Spanish, etc", "positional", None, str, ), ) def main(test_data_dir, experiment_dir, corpus): Token.set_extension("split_start", getter=get_token_split_start) Token.set_extension("split_end", getter=get_token_split_end) Token.set_extension("begins_fused", default=False) Token.set_extension("inside_fused", default=False) lang.zh.Chinese.Defaults.use_jieba = False lang.ja.Japanese.Defaults.use_janome = False lang.ru.Russian.Defaults.use_pymorphy2 = False nlp = load_nlp(experiment_dir, corpus) treebank_code = nlp.meta["treebank"] for section in ("test", "dev"): if section == "dev": section_dir = "conll17-ud-development-2017-03-19" else: section_dir = "conll17-ud-test-2017-05-09" text_path = test_data_dir / "input" / section_dir / (treebank_code + ".txt") udpipe_path = ( test_data_dir / "input" / section_dir / (treebank_code + "-udpipe.conllu") ) gold_path = test_data_dir / "gold" / section_dir / (treebank_code + ".conllu") header = [section, "LAS", "UAS", "TAG", "SENT", "WORD"] print("\t".join(header)) inputs = {"gold": gold_path, "udp": udpipe_path, "raw": text_path} for input_type in ("udp", "raw"): input_path = inputs[input_type] output_path = ( experiment_dir / corpus / "{section}.conllu".format(section=section) ) parsed_docs, test_scores = evaluate(nlp, input_path, gold_path, output_path) accuracy = print_results(input_type, test_scores) acc_path = ( experiment_dir / corpus / "{section}-accuracy.json".format(section=section) ) srsly.write_json(acc_path, accuracy) if __name__ == "__main__": plac.call(main)