# coding: utf8 from __future__ import unicode_literals from spacy.tokens import Doc import numpy as np def test_issue3540(en_vocab): words = ["I", "live", "in", "NewYork", "right", "now"] tensor = np.asarray([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1], [4.0, 4.1], [5.0, 5.1], [6.0, 6.1]], dtype="f") doc = Doc(en_vocab, words=words) doc.tensor = tensor gold_text = ["I", "live", "in", "NewYork", "right", "now"] assert [token.text for token in doc] == gold_text gold_lemma = ["I", "live", "in", "NewYork", "right", "now"] assert [token.lemma_ for token in doc] == gold_lemma vectors_1 = [token.vector for token in doc] assert len(vectors_1) == len(doc) with doc.retokenize() as retokenizer: heads = [(doc[3], 1), doc[2]] attrs = {"POS": ["PROPN", "PROPN"], "DEP": ["pobj", "compound"]} retokenizer.split(doc[3], [u"New", u"York"], heads=heads, attrs=attrs) gold_text = ["I", "live", "in", "New", "York", "right", "now"] assert [token.text for token in doc] == gold_text gold_lemma = ["I", "live", "in", "New", "York", "right", "now"] assert [token.lemma_ for token in doc] == gold_lemma vectors_2 = [token.vector for token in doc] assert len(vectors_2) == len(doc) assert vectors_1[0].tolist() == vectors_2[0].tolist() assert vectors_1[1].tolist() == vectors_2[1].tolist() assert vectors_1[2].tolist() == vectors_2[2].tolist() assert vectors_1[4].tolist() == vectors_2[5].tolist() assert vectors_1[5].tolist() == vectors_2[6].tolist()