from pathlib import Path import re from wasabi import msg import typer from thinc.api import Config import spacy from spacy.language import Language from ._util import configure_cli, Arg, Opt # These are the architectures that are recognized as tok2vec/feature sources. TOK2VEC_ARCHS = [("spacy", "Tok2Vec"), ("spacy-transformers", "TransformerModel")] # These are the listeners. LISTENER_ARCHS = [ ("spacy", "Tok2VecListener"), ("spacy-transformers", "TransformerListener"), ] def _deep_get(obj, key, default): """Given a multi-part key, try to get the key. If at any point this isn't possible, return the default. """ out = None slot = obj for notch in key: if slot is None or notch not in slot: return default slot = slot[notch] return slot def _get_tok2vecs(config): """Given a pipeline config, return the names of components that are tok2vecs (or Transformers). """ out = [] for name, comp in config["components"].items(): arch = _deep_get(comp, ("model", "@architectures"), False) if not arch: continue ns, model, ver = arch.split(".") if (ns, model) in TOK2VEC_ARCHS: out.append(name) return out def _has_listener(nlp, pipe_name): """Given a pipeline and a component name, check if it has a listener.""" arch = _deep_get( nlp.config, ("components", pipe_name, "model", "tok2vec", "@architectures"), False, ) if not arch: return False ns, model, ver = arch.split(".") return (ns, model) in LISTENER_ARCHS def _get_listeners(nlp): """Get the name of every component that contains a listener. Does not check that they listen to the same thing; assumes a pipeline has only one feature source. """ out = [] for name in nlp.pipe_names: if _has_listener(nlp, name): out.append(name) return out def _increment_suffix(name): """Given a name, return an incremented version. If no numeric suffix is found, return the original with "2" appended. This is used to avoid name collisions in pipelines. """ res = re.search(r"\d+$", name) if res is None: return f"{name}2" else: num = res.match prefix = name[0 : -len(num)] return f"{prefix}{int(num) + 1}" def _check_single_tok2vec(name, config): """Check if there is just one tok2vec in a config. A very simple check, but used in multiple functions. """ tok2vecs = _get_tok2vecs(config) fail_msg = f""" Can't handle pipelines with more than one feature source, but {name} has {len(tok2vecs)}.""" if len(tok2vecs) > 1: msg.fail(fail_msg, exits=1) def _check_pipeline_names(nlp, nlp2): """Given two pipelines, try to rename any collisions in component names. If a simple increment of a numeric suffix doesn't work, will give up. """ fail_msg = """ Tried automatically renaming {name} to {new_name}, but still had a collision, so bailing out. Please make your pipe names more unique. """ # map of components to be renamed rename = {} # check pipeline names names = nlp.pipe_names for name in nlp2.pipe_names: if name in names: inc = _increment_suffix(name) # TODO Would it be better to just keep incrementing? if inc in names or inc in nlp2.pipe_names: msg.fail(fail_msg.format(name=name, new_name=inc), exits=1) rename[name] = inc return rename @configure_cli.command("resume") def configure_resume_cli( # fmt: off base_model: Path = Arg(..., help="Path or name of base model to use for config"), output_path: Path = Arg(..., help="File to save the config to or - for stdout (will only output config and no additional logging info)", allow_dash=True), # fmt: on ): """Create a config for resuming training. A config for resuming training is the same as the input config, but with all components sourced. """ nlp = spacy.load(base_model) conf = nlp.config # Paths are not JSON serializable path_str = str(base_model) for comp in nlp.pipe_names: conf["components"][comp] = {"source": path_str} if str(output_path) == "-": print(conf.to_str()) else: conf.to_disk(output_path) msg.good("Saved config", output_path) return conf @configure_cli.command("transformer") def use_transformer( base_model: str, output_path: Path, transformer_name: str = "roberta-base" ) -> Config: """Replace pipeline tok2vec with transformer.""" # 1. identify tok2vec # 2. replace tok2vec # 3. replace listeners nlp = spacy.load(base_model) _check_single_tok2vec(base_model, nlp.config) tok2vecs = _get_tok2vecs(nlp.config) assert len(tok2vecs) > 0, "Must have tok2vec to replace!" nlp.remove_pipe(tok2vecs[0]) # the rest can be default values trf_config = { "model": { "name": transformer_name, } } trf = nlp.add_pipe("transformer", config=trf_config, first=True) # TODO maybe remove vectors? # now update the listeners listeners = _get_listeners(nlp) for listener in listeners: listener_config = { "@architectures": "spacy-transformers.TransformerListener.v1", "grad_factor": 1.0, "upstream": "transformer", "pooling": {"@layers": "reduce_mean.v1"}, } nlp.config["components"][listener]["model"]["tok2vec"] = listener_config if str(output_path) == "-": print(nlp.config.to_str()) else: nlp.config.to_disk(output_path) msg.good("Saved config", output_path) return nlp.config @configure_cli.command("tok2vec") def use_tok2vec(base_model: str, output_path: Path) -> Config: """Replace pipeline tok2vec with CNN tok2vec.""" nlp = spacy.load(base_model) _check_single_tok2vec(base_model, nlp.config) tok2vecs = _get_tok2vecs(nlp.config) assert len(tok2vecs) > 0, "Must have tok2vec to replace!" nlp.remove_pipe(tok2vecs[0]) tok2vec = nlp.add_pipe("tok2vec", first=True) width = "${components.tok2vec.model.encode:width}" listeners = _get_listeners(nlp) for listener in listeners: listener_config = { "@architectures": "spacy.Tok2VecListener.v1", "width": width, "upstream": "tok2vec", } nlp.config["components"][listener]["model"]["tok2vec"] = listener_config if str(output_path) == "-": print(nlp.config.to_str()) else: nlp.config.to_disk(output_path) msg.good("Saved config", output_path) return nlp.config def _inner_merge(nlp, nlp2, replace_listeners=False) -> Language: """Actually do the merge. nlp: Base pipeline to add components to. nlp2: Pipeline to add components from. replace_listeners (bool): Whether to replace listeners. Usually only true if there's one listener. returns: assembled pipeline. """ # we checked earlier, so there's definitely just one tok2vec_name = _get_tok2vecs(nlp2.config)[0] rename = _check_pipeline_names(nlp, nlp2) if len(_get_listeners(nlp2)) > 1: if replace_listeners: msg.warn( """ Replacing listeners for multiple components. Note this can make your pipeline large and slow. Consider chaining pipelines (like nlp2(nlp(text))) instead. """ ) else: # TODO provide a guide for what to do here msg.warn( """ The result of this merge will have two feature sources (tok2vecs) and multiple listeners. This will work for inference, but will probably not work when training without extra adjustment. If you continue to train the pipelines separately this is not a problem. """ ) for comp in nlp2.pipe_names: if replace_listeners and comp == tok2vec_name: # the tok2vec should not be copied over continue if replace_listeners and _has_listener(nlp2, comp): # TODO does "model.tok2vec" work for everything? nlp2.replace_listeners(tok2vec_name, comp, ["model.tok2vec"]) nlp.add_pipe(comp, source=nlp2, name=rename.get(comp, comp)) if comp in rename: msg.info(f"Renaming {comp} to {rename[comp]} to avoid collision...") return nlp @configure_cli.command("merge") def merge_pipelines(base_model: str, added_model: str, output_path: Path) -> Language: """Combine components from multiple pipelines.""" nlp = spacy.load(base_model) nlp2 = spacy.load(added_model) # to merge models: # - lang must be the same # - vectors must be the same # - vocabs must be the same (how to check?) # - tokenizer must be the same (only partially checkable) if nlp.lang != nlp2.lang: msg.fail("Can't merge - languages don't match", exits=1) # check vector equality if ( nlp.vocab.vectors.shape != nlp2.vocab.vectors.shape or nlp.vocab.vectors.key2row != nlp2.vocab.vectors.key2row or nlp.vocab.vectors.to_bytes(exclude=["strings"]) != nlp2.vocab.vectors.to_bytes(exclude=["strings"]) ): msg.fail("Can't merge - vectors don't match", exits=1) if nlp.config["nlp"]["tokenizer"] != nlp2.config["nlp"]["tokenizer"]: msg.fail("Can't merge - tokenizers don't match", exits=1) # Check that each pipeline only has one feature source _check_single_tok2vec(base_model, nlp.config) _check_single_tok2vec(added_model, nlp2.config) # Check how many listeners there are and replace based on that # TODO: option to recognize frozen tok2vecs # TODO: take list of pipe names to copy listeners = _get_listeners(nlp2) replace_listeners = len(listeners) == 1 print(replace_listeners, len(listeners)) nlp_out = _inner_merge(nlp, nlp2, replace_listeners=replace_listeners) # write the final pipeline nlp.to_disk(output_path) msg.info(f"Saved pipeline to: {output_path}") return nlp