import pytest import spacy from spacy.language import Language from spacy.lang.en import English from spacy.lang.de import German from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL from spacy.tokens import Doc from spacy.util import registry, SimpleFrozenDict, combine_score_weights from thinc.api import Model, Linear, ConfigValidationError from pydantic import StrictInt, StrictStr from ..util import make_tempdir @pytest.mark.issue(5137) def test_issue5137(): factory_name = "test_issue5137" pipe_name = "my_component" @Language.factory(factory_name) class MyComponent: def __init__(self, nlp, name=pipe_name, categories="all_categories"): self.nlp = nlp self.categories = categories self.name = name def __call__(self, doc): pass def to_disk(self, path, **kwargs): pass def from_disk(self, path, **cfg): pass nlp = English() my_component = nlp.add_pipe(factory_name, name=pipe_name) assert my_component.categories == "all_categories" with make_tempdir() as tmpdir: nlp.to_disk(tmpdir) overrides = {"components": {pipe_name: {"categories": "my_categories"}}} nlp2 = spacy.load(tmpdir, config=overrides) assert nlp2.get_pipe(pipe_name).categories == "my_categories" def test_pipe_function_component(): name = "test_component" @Language.component(name) def component(doc: Doc) -> Doc: return doc assert name in registry.factories nlp = Language() with pytest.raises(ValueError): nlp.add_pipe(component) nlp.add_pipe(name) assert name in nlp.pipe_names assert nlp.pipe_factories[name] == name assert Language.get_factory_meta(name) assert nlp.get_pipe_meta(name) pipe = nlp.get_pipe(name) assert pipe == component pipe = nlp.create_pipe(name) assert pipe == component def test_pipe_class_component_init(): name1 = "test_class_component1" name2 = "test_class_component2" @Language.factory(name1) class Component1: def __init__(self, nlp: Language, name: str): self.nlp = nlp def __call__(self, doc: Doc) -> Doc: return doc class Component2: def __init__(self, nlp: Language, name: str): self.nlp = nlp def __call__(self, doc: Doc) -> Doc: return doc @Language.factory(name2) def factory(nlp: Language, name=name2): return Component2(nlp, name) nlp = Language() for name, Component in [(name1, Component1), (name2, Component2)]: assert name in registry.factories with pytest.raises(ValueError): nlp.add_pipe(Component(nlp, name)) nlp.add_pipe(name) assert name in nlp.pipe_names assert nlp.pipe_factories[name] == name assert Language.get_factory_meta(name) assert nlp.get_pipe_meta(name) pipe = nlp.get_pipe(name) assert isinstance(pipe, Component) assert isinstance(pipe.nlp, Language) pipe = nlp.create_pipe(name) assert isinstance(pipe, Component) assert isinstance(pipe.nlp, Language) def test_pipe_class_component_config(): name = "test_class_component_config" @Language.factory(name) class Component: def __init__( self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr ): self.nlp = nlp self.value1 = value1 self.value2 = value2 self.is_base = True self.name = name def __call__(self, doc: Doc) -> Doc: return doc @English.factory(name) class ComponentEN: def __init__( self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr ): self.nlp = nlp self.value1 = value1 self.value2 = value2 self.is_base = False def __call__(self, doc: Doc) -> Doc: return doc nlp = Language() with pytest.raises(ConfigValidationError): # no config provided nlp.add_pipe(name) with pytest.raises(ConfigValidationError): # invalid config nlp.add_pipe(name, config={"value1": "10", "value2": "hello"}) with pytest.warns(UserWarning): nlp.add_pipe(name, config={"value1": 10, "value2": "hello", "name": "wrong_name"}) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 10 assert pipe.value2 == "hello" assert pipe.is_base is True assert pipe.name == name nlp_en = English() with pytest.raises(ConfigValidationError): # invalid config nlp_en.add_pipe(name, config={"value1": "10", "value2": "hello"}) nlp_en.add_pipe(name, config={"value1": 10, "value2": "hello"}) pipe = nlp_en.get_pipe(name) assert isinstance(pipe.nlp, English) assert pipe.value1 == 10 assert pipe.value2 == "hello" assert pipe.is_base is False def test_pipe_class_component_defaults(): name = "test_class_component_defaults" @Language.factory(name) class Component: def __init__( self, nlp: Language, name: str, value1: StrictInt = StrictInt(10), value2: StrictStr = StrictStr("hello"), ): self.nlp = nlp self.value1 = value1 self.value2 = value2 def __call__(self, doc: Doc) -> Doc: return doc nlp = Language() nlp.add_pipe(name) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 10 assert pipe.value2 == "hello" def test_pipe_class_component_model(): name = "test_class_component_model" default_config = { "model": { "@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": { "@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False, }, }, "value1": 10, } @Language.factory(name, default_config=default_config) class Component: def __init__(self, nlp: Language, model: Model, name: str, value1: StrictInt): self.nlp = nlp self.model = model self.value1 = value1 self.name = name def __call__(self, doc: Doc) -> Doc: return doc nlp = Language() nlp.add_pipe(name) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 10 assert isinstance(pipe.model, Model) def test_pipe_class_component_model_custom(): name = "test_class_component_model_custom" arch = f"{name}.arch" default_config = {"value1": 1, "model": {"@architectures": arch, "nO": 0, "nI": 0}} @Language.factory(name, default_config=default_config) class Component: def __init__( self, nlp: Language, model: Model, name: str, value1: StrictInt = StrictInt(10), ): self.nlp = nlp self.model = model self.value1 = value1 self.name = name def __call__(self, doc: Doc) -> Doc: return doc @registry.architectures(arch) def make_custom_arch(nO: StrictInt, nI: StrictInt): return Linear(nO, nI) nlp = Language() config = {"value1": 20, "model": {"@architectures": arch, "nO": 1, "nI": 2}} nlp.add_pipe(name, config=config) pipe = nlp.get_pipe(name) assert isinstance(pipe.nlp, Language) assert pipe.value1 == 20 assert isinstance(pipe.model, Model) assert pipe.model.name == "linear" nlp = Language() with pytest.raises(ConfigValidationError): config = {"value1": "20", "model": {"@architectures": arch, "nO": 1, "nI": 2}} nlp.add_pipe(name, config=config) with pytest.raises(ConfigValidationError): config = {"value1": 20, "model": {"@architectures": arch, "nO": 1.0, "nI": 2.0}} nlp.add_pipe(name, config=config) def test_pipe_factories_wrong_formats(): with pytest.raises(ValueError): # Decorator is not called @Language.component def component(foo: int, bar: str): ... with pytest.raises(ValueError): # Decorator is not called @Language.factory def factory1(foo: int, bar: str): ... with pytest.raises(ValueError): # Factory function is missing "nlp" and "name" arguments @Language.factory("test_pipe_factories_missing_args") def factory2(foo: int, bar: str): ... def test_pipe_factory_meta_config_cleanup(): """Test that component-specific meta and config entries are represented correctly and cleaned up when pipes are removed, replaced or renamed.""" nlp = Language() nlp.add_pipe("ner", name="ner_component") nlp.add_pipe("textcat") assert nlp.get_factory_meta("ner") assert nlp.get_pipe_meta("ner_component") assert nlp.get_pipe_config("ner_component") assert nlp.get_factory_meta("textcat") assert nlp.get_pipe_meta("textcat") assert nlp.get_pipe_config("textcat") nlp.rename_pipe("textcat", "tc") assert nlp.get_pipe_meta("tc") assert nlp.get_pipe_config("tc") with pytest.raises(ValueError): nlp.remove_pipe("ner") nlp.remove_pipe("ner_component") assert "ner_component" not in nlp._pipe_meta assert "ner_component" not in nlp._pipe_configs with pytest.raises(ValueError): nlp.replace_pipe("textcat", "parser") nlp.replace_pipe("tc", "parser") assert nlp.get_factory_meta("parser") assert nlp.get_pipe_meta("tc").factory == "parser" def test_pipe_factories_empty_dict_default(): """Test that default config values can be empty dicts and that no config validation error is raised.""" # TODO: fix this name = "test_pipe_factories_empty_dict_default" @Language.factory(name, default_config={"foo": {}}) def factory(nlp: Language, name: str, foo: dict): ... nlp = Language() nlp.create_pipe(name) def test_pipe_factories_language_specific(): """Test that language sub-classes can have their own factories, with fallbacks to the base factories.""" name1 = "specific_component1" name2 = "specific_component2" Language.component(name1, func=lambda: "base") English.component(name1, func=lambda: "en") German.component(name2, func=lambda: "de") assert Language.has_factory(name1) assert not Language.has_factory(name2) assert English.has_factory(name1) assert not English.has_factory(name2) assert German.has_factory(name1) assert German.has_factory(name2) nlp = Language() assert nlp.create_pipe(name1)() == "base" with pytest.raises(ValueError): nlp.create_pipe(name2) nlp_en = English() assert nlp_en.create_pipe(name1)() == "en" with pytest.raises(ValueError): nlp_en.create_pipe(name2) nlp_de = German() assert nlp_de.create_pipe(name1)() == "base" assert nlp_de.create_pipe(name2)() == "de" def test_language_factories_invalid(): """Test that assigning directly to Language.factories is now invalid and raises a custom error.""" assert isinstance(Language.factories, SimpleFrozenDict) with pytest.raises(NotImplementedError): Language.factories["foo"] = "bar" nlp = Language() assert isinstance(nlp.factories, SimpleFrozenDict) assert len(nlp.factories) with pytest.raises(NotImplementedError): nlp.factories["foo"] = "bar" @pytest.mark.parametrize( "weights,override,expected", [ ([{"a": 1.0}, {"b": 1.0}, {"c": 1.0}], {}, {"a": 0.33, "b": 0.33, "c": 0.33}), ([{"a": 1.0}, {"b": 50}, {"c": 100}], {}, {"a": 0.01, "b": 0.33, "c": 0.66}), ( [{"a": 0.7, "b": 0.3}, {"c": 1.0}, {"d": 0.5, "e": 0.5}], {}, {"a": 0.23, "b": 0.1, "c": 0.33, "d": 0.17, "e": 0.17}, ), ( [{"a": 100, "b": 300}, {"c": 50, "d": 50}], {}, {"a": 0.2, "b": 0.6, "c": 0.1, "d": 0.1}, ), ([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {}, {"a": 0.33, "b": 0.67}), ([{"a": 0.5, "b": 0.0}], {}, {"a": 1.0, "b": 0.0}), ([{"a": 0.5, "b": 0.5}, {"b": 1.0}], {"a": 0.0}, {"a": 0.0, "b": 1.0}), ([{"a": 0.0, "b": 0.0}, {"c": 0.0}], {}, {"a": 0.0, "b": 0.0, "c": 0.0}), ([{"a": 0.0, "b": 0.0}, {"c": 1.0}], {}, {"a": 0.0, "b": 0.0, "c": 1.0}), ( [{"a": 0.0, "b": 0.0}, {"c": 0.0}], {"c": 0.2}, {"a": 0.0, "b": 0.0, "c": 1.0}, ), ( [{"a": 0.5, "b": 0.5, "c": 1.0, "d": 1.0}], {"a": 0.0, "b": 0.0}, {"a": 0.0, "b": 0.0, "c": 0.5, "d": 0.5}, ), ( [{"a": 0.5, "b": 0.5, "c": 1.0, "d": 1.0}], {"a": 0.0, "b": 0.0, "f": 0.0}, {"a": 0.0, "b": 0.0, "c": 0.5, "d": 0.5, "f": 0.0}, ), ], ) def test_language_factories_combine_score_weights(weights, override, expected): result = combine_score_weights(weights, override) assert sum(result.values()) in (0.99, 1.0, 0.0) assert result == expected def test_language_factories_scores(): name = "test_language_factories_scores" func = lambda nlp, name: lambda doc: doc weights1 = {"a1": 0.5, "a2": 0.5} weights2 = {"b1": 0.2, "b2": 0.7, "b3": 0.1} Language.factory(f"{name}1", default_score_weights=weights1, func=func) Language.factory(f"{name}2", default_score_weights=weights2, func=func) meta1 = Language.get_factory_meta(f"{name}1") assert meta1.default_score_weights == weights1 meta2 = Language.get_factory_meta(f"{name}2") assert meta2.default_score_weights == weights2 nlp = Language() nlp._config["training"]["score_weights"] = {} nlp.add_pipe(f"{name}1") nlp.add_pipe(f"{name}2") cfg = nlp.config["training"] expected_weights = {"a1": 0.25, "a2": 0.25, "b1": 0.1, "b2": 0.35, "b3": 0.05} assert cfg["score_weights"] == expected_weights # Test with custom defaults config = nlp.config.copy() config["training"]["score_weights"]["a1"] = 0.0 config["training"]["score_weights"]["b3"] = 1.3 nlp = English.from_config(config) score_weights = nlp.config["training"]["score_weights"] expected = {"a1": 0.0, "a2": 0.12, "b1": 0.05, "b2": 0.17, "b3": 0.65} assert score_weights == expected # Test with null values config = nlp.config.copy() config["training"]["score_weights"]["a1"] = None nlp = English.from_config(config) score_weights = nlp.config["training"]["score_weights"] expected = {"a1": None, "a2": 0.12, "b1": 0.05, "b2": 0.17, "b3": 0.66} assert score_weights == expected def test_pipe_factories_from_source(): """Test adding components from a source model.""" source_nlp = English() source_nlp.add_pipe("tagger", name="my_tagger") nlp = English() with pytest.raises(ValueError): nlp.add_pipe("my_tagger", source="en_core_web_sm") nlp.add_pipe("my_tagger", source=source_nlp) assert "my_tagger" in nlp.pipe_names with pytest.raises(KeyError): nlp.add_pipe("custom", source=source_nlp) def test_pipe_factories_from_source_language_subclass(): class CustomEnglishDefaults(English.Defaults): stop_words = set(["custom", "stop"]) @registry.languages("custom_en") class CustomEnglish(English): lang = "custom_en" Defaults = CustomEnglishDefaults source_nlp = English() source_nlp.add_pipe("tagger") # custom subclass nlp = CustomEnglish() nlp.add_pipe("tagger", source=source_nlp) assert "tagger" in nlp.pipe_names # non-subclass nlp = German() nlp.add_pipe("tagger", source=source_nlp) assert "tagger" in nlp.pipe_names # mismatched vectors nlp = English() nlp.vocab.vectors.resize((1, 4)) nlp.vocab.vectors.add("cat", vector=[1, 2, 3, 4]) with pytest.warns(UserWarning): nlp.add_pipe("tagger", source=source_nlp) def test_pipe_factories_from_source_custom(): """Test adding components from a source model with custom components.""" name = "test_pipe_factories_from_source_custom" @Language.factory(name, default_config={"arg": "hello"}) def test_factory(nlp, name, arg: str): return lambda doc: doc source_nlp = English() source_nlp.add_pipe("tagger") source_nlp.add_pipe(name, config={"arg": "world"}) nlp = English() nlp.add_pipe(name, source=source_nlp) assert name in nlp.pipe_names assert nlp.get_pipe_meta(name).default_config["arg"] == "hello" config = nlp.config["components"][name] assert config["factory"] == name assert config["arg"] == "world" def test_pipe_factories_from_source_config(): name = "test_pipe_factories_from_source_config" @Language.factory(name, default_config={"arg": "hello"}) def test_factory(nlp, name, arg: str): return lambda doc: doc source_nlp = English() source_nlp.add_pipe("tagger") source_nlp.add_pipe(name, name="yolo", config={"arg": "world"}) dest_nlp_cfg = {"lang": "en", "pipeline": ["parser", "custom"]} with make_tempdir() as tempdir: source_nlp.to_disk(tempdir) dest_components_cfg = { "parser": {"factory": "parser"}, "custom": {"source": str(tempdir), "component": "yolo"}, } dest_config = {"nlp": dest_nlp_cfg, "components": dest_components_cfg} nlp = English.from_config(dest_config) assert nlp.pipe_names == ["parser", "custom"] assert nlp.pipe_factories == {"parser": "parser", "custom": name} meta = nlp.get_pipe_meta("custom") assert meta.factory == name assert meta.default_config["arg"] == "hello" config = nlp.config["components"]["custom"] assert config["factory"] == name assert config["arg"] == "world" class PipeFactoriesIdempotent: def __init__(self, nlp, name): ... def __call__(self, doc): ... @pytest.mark.parametrize( "i,func,func2", [ (0, lambda nlp, name: lambda doc: doc, lambda doc: doc), (1, PipeFactoriesIdempotent, PipeFactoriesIdempotent(None, None)), ], ) def test_pipe_factories_decorator_idempotent(i, func, func2): """Check that decorator can be run multiple times if the function is the same. This is especially relevant for live reloading because we don't want spaCy to raise an error if a module registering components is reloaded. """ name = f"test_pipe_factories_decorator_idempotent_{i}" for i in range(5): Language.factory(name, func=func) nlp = Language() nlp.add_pipe(name) Language.factory(name, func=func) # Make sure it also works for component decorator, which creates the # factory function name2 = f"{name}2" for i in range(5): Language.component(name2, func=func2) nlp = Language() nlp.add_pipe(name) Language.component(name2, func=func2) def test_pipe_factories_config_excludes_nlp(): """Test that the extra values we temporarily add to component config blocks/functions are removed and not copied around. """ name = "test_pipe_factories_config_excludes_nlp" func = lambda nlp, name: lambda doc: doc Language.factory(name, func=func) config = { "nlp": {"lang": "en", "pipeline": [name]}, "components": {name: {"factory": name}}, } nlp = English.from_config(config) assert nlp.pipe_names == [name] pipe_cfg = nlp.get_pipe_config(name) pipe_cfg == {"factory": name} assert nlp._pipe_configs[name] == {"factory": name}