from typing import Optional, List, Dict from wasabi import Printer from pathlib import Path import re import srsly from thinc.api import fix_random_seed from ..training import Corpus from ..tokens import Doc from ._util import app, Arg, Opt, setup_gpu, import_code from ..scorer import Scorer from .. import util from .. import displacy @app.command("evaluate") def evaluate_cli( # fmt: off model: str = Arg(..., help="Model name or path"), data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True), output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"), gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"), displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False), displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"), # fmt: on ): """ Evaluate a trained pipeline. Expects a loadable spaCy pipeline and evaluation data in the binary .spacy format. The --gold-preproc option sets up the evaluation examples with gold-standard sentences and tokens for the predictions. Gold preprocessing helps the annotations align to the tokenization, and may result in sequences of more consistent length. However, it may reduce runtime accuracy due to train/test skew. To render a sample of dependency parses in a HTML file, set as output directory as the displacy_path argument. DOCS: https://nightly.spacy.io/api/cli#evaluate """ import_code(code_path) evaluate( model, data_path, output=output, use_gpu=use_gpu, gold_preproc=gold_preproc, displacy_path=displacy_path, displacy_limit=displacy_limit, silent=False, ) def evaluate( model: str, data_path: Path, output: Optional[Path] = None, use_gpu: int = -1, gold_preproc: bool = False, displacy_path: Optional[Path] = None, displacy_limit: int = 25, silent: bool = True, ) -> Scorer: msg = Printer(no_print=silent, pretty=not silent) fix_random_seed() setup_gpu(use_gpu) data_path = util.ensure_path(data_path) output_path = util.ensure_path(output) displacy_path = util.ensure_path(displacy_path) if not data_path.exists(): msg.fail("Evaluation data not found", data_path, exits=1) if displacy_path and not displacy_path.exists(): msg.fail("Visualization output directory not found", displacy_path, exits=1) corpus = Corpus(data_path, gold_preproc=gold_preproc) nlp = util.load_model(model) dev_dataset = list(corpus(nlp)) scores = nlp.evaluate(dev_dataset) metrics = { "TOK": "token_acc", "TAG": "tag_acc", "POS": "pos_acc", "MORPH": "morph_acc", "LEMMA": "lemma_acc", "UAS": "dep_uas", "LAS": "dep_las", "NER P": "ents_p", "NER R": "ents_r", "NER F": "ents_f", "TEXTCAT": "cats_score", "SENT P": "sents_p", "SENT R": "sents_r", "SENT F": "sents_f", "SPEED": "speed", } results = {} data = {} for metric, key in metrics.items(): if key in scores: if key == "cats_score": metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")" if isinstance(scores[key], (int, float)): if key == "speed": results[metric] = f"{scores[key]:.0f}" else: results[metric] = f"{scores[key]*100:.2f}" else: results[metric] = "-" data[re.sub(r"[\s/]", "_", key.lower())] = scores[key] msg.table(results, title="Results") if "morph_per_feat" in scores: if scores["morph_per_feat"]: print_prf_per_type(msg, scores["morph_per_feat"], "MORPH", "feat") data["morph_per_feat"] = scores["morph_per_feat"] if "dep_las_per_type" in scores: if scores["dep_las_per_type"]: print_prf_per_type(msg, scores["dep_las_per_type"], "LAS", "type") data["dep_las_per_type"] = scores["dep_las_per_type"] if "ents_per_type" in scores: if scores["ents_per_type"]: print_prf_per_type(msg, scores["ents_per_type"], "NER", "type") data["ents_per_type"] = scores["ents_per_type"] if "cats_f_per_type" in scores: if scores["cats_f_per_type"]: print_prf_per_type(msg, scores["cats_f_per_type"], "Textcat F", "label") data["cats_f_per_type"] = scores["cats_f_per_type"] if "cats_auc_per_type" in scores: if scores["cats_auc_per_type"]: print_textcats_auc_per_cat(msg, scores["cats_auc_per_type"]) data["cats_auc_per_type"] = scores["cats_auc_per_type"] if displacy_path: factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names] docs = [ex.predicted for ex in dev_dataset] render_deps = "parser" in factory_names render_ents = "ner" in factory_names render_parses( docs, displacy_path, model_name=model, limit=displacy_limit, deps=render_deps, ents=render_ents, ) msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path) if output_path is not None: srsly.write_json(output_path, data) msg.good(f"Saved results to {output_path}") return data def render_parses( docs: List[Doc], output_path: Path, model_name: str = "", limit: int = 250, deps: bool = True, ents: bool = True, ): docs[0].user_data["title"] = model_name if ents: html = displacy.render(docs[:limit], style="ent", page=True) with (output_path / "entities.html").open("w", encoding="utf8") as file_: file_.write(html) if deps: html = displacy.render( docs[:limit], style="dep", page=True, options={"compact": True} ) with (output_path / "parses.html").open("w", encoding="utf8") as file_: file_.write(html) def print_prf_per_type(msg: Printer, scores: Dict[str, Dict[str, float]], name: str, type: str) -> None: data = [ (k, f"{v['p']*100:.2f}", f"{v['r']*100:.2f}", f"{v['f']*100:.2f}") for k, v in scores.items() ] msg.table( data, header=("", "P", "R", "F"), aligns=("l", "r", "r", "r"), title=f"{name} (per {type})", ) def print_textcats_auc_per_cat( msg: Printer, scores: Dict[str, Dict[str, float]] ) -> None: msg.table( [(k, f"{v:.2f}") for k, v in scores.items()], header=("", "ROC AUC"), aligns=("l", "r"), title="Textcat ROC AUC (per label)", )