mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
6dd56868de
SpaCy's HashEmbedCNN layer performs convolutions over tokens to produce contextualized embeddings using a `MaxoutWindowEncoder` layer. These convolutions are implemented using Thinc's `expand_window` layer, which concatenates `window_size` neighboring sequence items on either side of the sequence item being processed. This is repeated across `depth` convolutional layers. For example, consider the sequence "ABCDE" and a `MaxoutWindowEncoder` layer with a context window of 1 and a depth of 2. We'll focus on the token "C". We can visually represent the contextual embedding produced for "C" as: ```mermaid flowchart LR A0(A<sub>0</sub>) B0(B<sub>0</sub>) C0(C<sub>0</sub>) D0(D<sub>0</sub>) E0(E<sub>0</sub>) B1(B<sub>1</sub>) C1(C<sub>1</sub>) D1(D<sub>1</sub>) C2(C<sub>2</sub>) A0 --> B1 B0 --> B1 C0 --> B1 B0 --> C1 C0 --> C1 D0 --> C1 C0 --> D1 D0 --> D1 E0 --> D1 B1 --> C2 C1 --> C2 D1 --> C2 ``` Described in words, this graph shows that before the first layer of the convolution, the "receptive field" centered at each token consists only of that same token. That is to say, that we have a receptive field of 1. The first layer of the convolution adds one neighboring token on either side to the receptive field. Since this is done on both sides, the receptive field increases by 2, giving the first layer a receptive field of 3. The second layer of the convolutions adds an _additional_ neighboring token on either side to the receptive field, giving a final receptive field of 5. However, this doesn't match the formula currently given in the docs, which read: > The receptive field of the CNN will be > `depth * (window_size * 2 + 1)`, so a 4-layer network with a window > size of `2` will be sensitive to 20 words at a time. Substituting in our depth of 2 and window size of 1, this formula gives us a receptive field of: ``` depth * (window_size * 2 + 1) = 2 * (1 * 2 + 1) = 2 * (2 + 1) = 2 * 3 = 6 ``` This not only doesn't match our computations from above, it's also an even number! This is suspicious, since the receptive field is supposed to be centered on a token, and not between tokens. Generally, this formula results in an even number for any even value of `depth`. The error in this formula is that the adjustment for the center token is multiplied by the depth, when it should occur only once. The corrected formula, `depth * window_size * 2 + 1`, gives the correct value for our small example from above: ``` depth * window_size * 2 + 1 = 2 * 1 * 2 + 1 = 4 + 1 = 5 ``` These changes update the docs to correct the receptive field formula and the example receptive field size.
352 lines
14 KiB
Python
352 lines
14 KiB
Python
from typing import List, Optional, Union, cast
|
|
|
|
from thinc.api import (
|
|
HashEmbed,
|
|
Maxout,
|
|
Mish,
|
|
Model,
|
|
PyTorchLSTM,
|
|
chain,
|
|
clone,
|
|
concatenate,
|
|
expand_window,
|
|
list2ragged,
|
|
noop,
|
|
ragged2list,
|
|
residual,
|
|
with_array,
|
|
with_padded,
|
|
)
|
|
from thinc.types import Floats2d, Ints1d, Ints2d, Ragged
|
|
|
|
from ...attrs import intify_attr
|
|
from ...errors import Errors
|
|
from ...ml import _character_embed
|
|
from ...pipeline.tok2vec import Tok2VecListener
|
|
from ...tokens import Doc
|
|
from ...util import registry
|
|
from ..featureextractor import FeatureExtractor
|
|
from ..staticvectors import StaticVectors
|
|
|
|
|
|
@registry.architectures("spacy.Tok2VecListener.v1")
|
|
def tok2vec_listener_v1(width: int, upstream: str = "*"):
|
|
tok2vec = Tok2VecListener(upstream_name=upstream, width=width)
|
|
return tok2vec
|
|
|
|
|
|
def get_tok2vec_width(model: Model):
|
|
nO = None
|
|
if model.has_ref("tok2vec"):
|
|
tok2vec = model.get_ref("tok2vec")
|
|
if tok2vec.has_dim("nO"):
|
|
nO = tok2vec.get_dim("nO")
|
|
elif tok2vec.has_ref("listener"):
|
|
nO = tok2vec.get_ref("listener").get_dim("nO")
|
|
return nO
|
|
|
|
|
|
@registry.architectures("spacy.HashEmbedCNN.v2")
|
|
def build_hash_embed_cnn_tok2vec(
|
|
*,
|
|
width: int,
|
|
depth: int,
|
|
embed_size: int,
|
|
window_size: int,
|
|
maxout_pieces: int,
|
|
subword_features: bool,
|
|
pretrained_vectors: Optional[bool],
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Build spaCy's 'standard' tok2vec layer, which uses hash embedding
|
|
with subword features and a CNN with layer-normalized maxout.
|
|
|
|
width (int): The width of the input and output. These are required to be the
|
|
same, so that residual connections can be used. Recommended values are
|
|
96, 128 or 300.
|
|
depth (int): The number of convolutional layers to use. Recommended values
|
|
are between 2 and 8.
|
|
window_size (int): The number of tokens on either side to concatenate during
|
|
the convolutions. The receptive field of the CNN will be
|
|
depth * window_size * 2 + 1, so a 4-layer network with window_size of
|
|
2 will be sensitive to 17 words at a time. Recommended value is 1.
|
|
embed_size (int): The number of rows in the hash embedding tables. This can
|
|
be surprisingly small, due to the use of the hash embeddings. Recommended
|
|
values are between 2000 and 10000.
|
|
maxout_pieces (int): The number of pieces to use in the maxout non-linearity.
|
|
If 1, the Mish non-linearity is used instead. Recommended values are 1-3.
|
|
subword_features (bool): Whether to also embed subword features, specifically
|
|
the prefix, suffix and word shape. This is recommended for alphabetic
|
|
languages like English, but not if single-character tokens are used for
|
|
a language such as Chinese.
|
|
pretrained_vectors (bool): Whether to also use static vectors.
|
|
"""
|
|
if subword_features:
|
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
|
row_sizes = [embed_size, embed_size // 2, embed_size // 2, embed_size // 2]
|
|
else:
|
|
attrs = ["NORM"]
|
|
row_sizes = [embed_size]
|
|
return build_Tok2Vec_model(
|
|
embed=MultiHashEmbed(
|
|
width=width,
|
|
rows=row_sizes,
|
|
attrs=attrs,
|
|
include_static_vectors=bool(pretrained_vectors),
|
|
),
|
|
encode=MaxoutWindowEncoder(
|
|
width=width,
|
|
depth=depth,
|
|
window_size=window_size,
|
|
maxout_pieces=maxout_pieces,
|
|
),
|
|
)
|
|
|
|
|
|
@registry.architectures("spacy.Tok2Vec.v2")
|
|
def build_Tok2Vec_model(
|
|
embed: Model[List[Doc], List[Floats2d]],
|
|
encode: Model[List[Floats2d], List[Floats2d]],
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct a tok2vec model out of embedding and encoding subnetworks.
|
|
See https://explosion.ai/blog/deep-learning-formula-nlp
|
|
|
|
embed (Model[List[Doc], List[Floats2d]]): Embed tokens into context-independent
|
|
word vector representations.
|
|
encode (Model[List[Floats2d], List[Floats2d]]): Encode context into the
|
|
embeddings, using an architecture such as a CNN, BiLSTM or transformer.
|
|
"""
|
|
tok2vec = chain(embed, encode)
|
|
if encode.has_dim("nO"):
|
|
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
|
tok2vec.set_ref("embed", embed)
|
|
tok2vec.set_ref("encode", encode)
|
|
return tok2vec
|
|
|
|
|
|
@registry.architectures("spacy.MultiHashEmbed.v2")
|
|
def MultiHashEmbed(
|
|
width: int,
|
|
attrs: List[Union[str, int]],
|
|
rows: List[int],
|
|
include_static_vectors: bool,
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct an embedding layer that separately embeds a number of lexical
|
|
attributes using hash embedding, concatenates the results, and passes it
|
|
through a feed-forward subnetwork to build a mixed representation.
|
|
|
|
The features used can be configured with the 'attrs' argument. The suggested
|
|
attributes are NORM, PREFIX, SUFFIX and SHAPE. This lets the model take into
|
|
account some subword information, without constructing a fully character-based
|
|
representation. If pretrained vectors are available, they can be included in
|
|
the representation as well, with the vectors table kept static
|
|
(i.e. it's not updated).
|
|
|
|
The `width` parameter specifies the output width of the layer and the widths
|
|
of all embedding tables. If static vectors are included, a learned linear
|
|
layer is used to map the vectors to the specified width before concatenating
|
|
it with the other embedding outputs. A single Maxout layer is then used to
|
|
reduce the concatenated vectors to the final width.
|
|
|
|
The `rows` parameter controls the number of rows used by the `HashEmbed`
|
|
tables. The HashEmbed layer needs surprisingly few rows, due to its use of
|
|
the hashing trick. Generally between 2000 and 10000 rows is sufficient,
|
|
even for very large vocabularies. A number of rows must be specified for each
|
|
table, so the `rows` list must be of the same length as the `attrs` parameter.
|
|
|
|
width (int): The output width. Also used as the width of the embedding tables.
|
|
Recommended values are between 64 and 300.
|
|
attrs (list of attr IDs): The token attributes to embed. A separate
|
|
embedding table will be constructed for each attribute.
|
|
rows (List[int]): The number of rows in the embedding tables. Must have the
|
|
same length as attrs.
|
|
include_static_vectors (bool): Whether to also use static word vectors.
|
|
Requires a vectors table to be loaded in the Doc objects' vocab.
|
|
"""
|
|
if len(rows) != len(attrs):
|
|
raise ValueError(f"Mismatched lengths: {len(rows)} vs {len(attrs)}")
|
|
seed = 7
|
|
|
|
def make_hash_embed(index):
|
|
nonlocal seed
|
|
seed += 1
|
|
return HashEmbed(width, rows[index], column=index, seed=seed, dropout=0.0)
|
|
|
|
embeddings = [make_hash_embed(i) for i in range(len(attrs))]
|
|
concat_size = width * (len(embeddings) + include_static_vectors)
|
|
max_out: Model[Ragged, Ragged] = with_array(
|
|
Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)
|
|
)
|
|
if include_static_vectors:
|
|
feature_extractor: Model[List[Doc], Ragged] = chain(
|
|
FeatureExtractor(attrs),
|
|
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
|
with_array(concatenate(*embeddings)),
|
|
)
|
|
model = chain(
|
|
concatenate(
|
|
feature_extractor,
|
|
StaticVectors(width, dropout=0.0),
|
|
),
|
|
max_out,
|
|
ragged2list(),
|
|
)
|
|
else:
|
|
model = chain(
|
|
FeatureExtractor(list(attrs)),
|
|
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
|
with_array(concatenate(*embeddings)),
|
|
max_out,
|
|
ragged2list(),
|
|
)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.CharacterEmbed.v2")
|
|
def CharacterEmbed(
|
|
width: int,
|
|
rows: int,
|
|
nM: int,
|
|
nC: int,
|
|
include_static_vectors: bool,
|
|
feature: Union[int, str] = "LOWER",
|
|
) -> Model[List[Doc], List[Floats2d]]:
|
|
"""Construct an embedded representation based on character embeddings, using
|
|
a feed-forward network. A fixed number of UTF-8 byte characters are used for
|
|
each word, taken from the beginning and end of the word equally. Padding is
|
|
used in the centre for words that are too short.
|
|
|
|
For instance, let's say nC=4, and the word is "jumping". The characters
|
|
used will be jung (two from the start, two from the end). If we had nC=8,
|
|
the characters would be "jumpping": 4 from the start, 4 from the end. This
|
|
ensures that the final character is always in the last position, instead
|
|
of being in an arbitrary position depending on the word length.
|
|
|
|
The characters are embedded in a embedding table with a given number of rows,
|
|
and the vectors concatenated. A hash-embedded vector of the LOWER of the word is
|
|
also concatenated on, and the result is then passed through a feed-forward
|
|
network to construct a single vector to represent the information.
|
|
|
|
feature (int or str): An attribute to embed, to concatenate with the characters.
|
|
width (int): The width of the output vector and the feature embedding.
|
|
rows (int): The number of rows in the LOWER hash embedding table.
|
|
nM (int): The dimensionality of the character embeddings. Recommended values
|
|
are between 16 and 64.
|
|
nC (int): The number of UTF-8 bytes to embed per word. Recommended values
|
|
are between 3 and 8, although it may depend on the length of words in the
|
|
language.
|
|
include_static_vectors (bool): Whether to also use static word vectors.
|
|
Requires a vectors table to be loaded in the Doc objects' vocab.
|
|
"""
|
|
feature = intify_attr(feature)
|
|
if feature is None:
|
|
raise ValueError(Errors.E911.format(feat=feature))
|
|
char_embed = chain(
|
|
_character_embed.CharacterEmbed(nM=nM, nC=nC),
|
|
cast(Model[List[Floats2d], Ragged], list2ragged()),
|
|
)
|
|
feature_extractor: Model[List[Doc], Ragged] = chain(
|
|
FeatureExtractor([feature]),
|
|
cast(Model[List[Ints2d], Ragged], list2ragged()),
|
|
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore[misc]
|
|
)
|
|
max_out: Model[Ragged, Ragged]
|
|
if include_static_vectors:
|
|
max_out = with_array(
|
|
Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0)
|
|
)
|
|
model = chain(
|
|
concatenate(
|
|
char_embed,
|
|
feature_extractor,
|
|
StaticVectors(width, dropout=0.0),
|
|
),
|
|
max_out,
|
|
ragged2list(),
|
|
)
|
|
else:
|
|
max_out = with_array(
|
|
Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0)
|
|
)
|
|
model = chain(
|
|
concatenate(
|
|
char_embed,
|
|
feature_extractor,
|
|
),
|
|
max_out,
|
|
ragged2list(),
|
|
)
|
|
return model
|
|
|
|
|
|
@registry.architectures("spacy.MaxoutWindowEncoder.v2")
|
|
def MaxoutWindowEncoder(
|
|
width: int, window_size: int, maxout_pieces: int, depth: int
|
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
|
"""Encode context using convolutions with maxout activation, layer
|
|
normalization and residual connections.
|
|
|
|
width (int): The input and output width. These are required to be the same,
|
|
to allow residual connections. This value will be determined by the
|
|
width of the inputs. Recommended values are between 64 and 300.
|
|
window_size (int): The number of words to concatenate around each token
|
|
to construct the convolution. Recommended value is 1.
|
|
maxout_pieces (int): The number of maxout pieces to use. Recommended
|
|
values are 2 or 3.
|
|
depth (int): The number of convolutional layers. Recommended value is 4.
|
|
"""
|
|
cnn = chain(
|
|
expand_window(window_size=window_size),
|
|
Maxout(
|
|
nO=width,
|
|
nI=width * ((window_size * 2) + 1),
|
|
nP=maxout_pieces,
|
|
dropout=0.0,
|
|
normalize=True,
|
|
),
|
|
)
|
|
model = clone(residual(cnn), depth)
|
|
model.set_dim("nO", width)
|
|
receptive_field = window_size * depth
|
|
return with_array(model, pad=receptive_field)
|
|
|
|
|
|
@registry.architectures("spacy.MishWindowEncoder.v2")
|
|
def MishWindowEncoder(
|
|
width: int, window_size: int, depth: int
|
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
|
"""Encode context using convolutions with mish activation, layer
|
|
normalization and residual connections.
|
|
|
|
width (int): The input and output width. These are required to be the same,
|
|
to allow residual connections. This value will be determined by the
|
|
width of the inputs. Recommended values are between 64 and 300.
|
|
window_size (int): The number of words to concatenate around each token
|
|
to construct the convolution. Recommended value is 1.
|
|
depth (int): The number of convolutional layers. Recommended value is 4.
|
|
"""
|
|
cnn = chain(
|
|
expand_window(window_size=window_size),
|
|
Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True),
|
|
)
|
|
model = clone(residual(cnn), depth)
|
|
model.set_dim("nO", width)
|
|
return with_array(model)
|
|
|
|
|
|
@registry.architectures("spacy.TorchBiLSTMEncoder.v1")
|
|
def BiLSTMEncoder(
|
|
width: int, depth: int, dropout: float
|
|
) -> Model[List[Floats2d], List[Floats2d]]:
|
|
"""Encode context using bidirectonal LSTM layers. Requires PyTorch.
|
|
|
|
width (int): The input and output width. These are required to be the same,
|
|
to allow residual connections. This value will be determined by the
|
|
width of the inputs. Recommended values are between 64 and 300.
|
|
depth (int): The number of recurrent layers.
|
|
dropout (float): Creates a Dropout layer on the outputs of each LSTM layer
|
|
except the last layer. Set to 0 to disable this functionality.
|
|
"""
|
|
if depth == 0:
|
|
return noop()
|
|
return with_padded(PyTorchLSTM(width, width, bi=True, depth=depth, dropout=dropout))
|