mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
da7ad97519
* Update `TextCatBOW` to use the fixed `SparseLinear` layer A while ago, we fixed the `SparseLinear` layer to use all available parameters: https://github.com/explosion/thinc/pull/754 This change updates `TextCatBOW` to `v3` which uses the new `SparseLinear_v2` layer. This results in a sizeable improvement on a text categorization task that was tested. While at it, this `spacy.TextCatBOW.v3` also adds the `length_exponent` option to make it possible to change the hidden size. Ideally, we'd just have an option called `length`. But the way that `TextCatBOW` uses hashes results in a non-uniform distribution of parameters when the length is not a power of two. * Replace TexCatBOW `length_exponent` parameter by `length` We now round up the length to the next power of two if it isn't a power of two. * Remove some tests for TextCatBOW.v2 * Fix missing import
430 lines
14 KiB
Python
430 lines
14 KiB
Python
import os
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
import srsly
|
|
from typer.testing import CliRunner
|
|
|
|
from spacy.cli._util import app, get_git_version
|
|
from spacy.tokens import Doc, DocBin, Span
|
|
|
|
from .util import make_tempdir, normalize_whitespace
|
|
|
|
|
|
def has_git():
|
|
try:
|
|
get_git_version()
|
|
return True
|
|
except RuntimeError:
|
|
return False
|
|
|
|
|
|
def test_convert_auto():
|
|
with make_tempdir() as d_in, make_tempdir() as d_out:
|
|
for f in ["data1.iob", "data2.iob", "data3.iob"]:
|
|
Path(d_in / f).touch()
|
|
|
|
# ensure that "automatic" suffix detection works
|
|
result = CliRunner().invoke(app, ["convert", str(d_in), str(d_out)])
|
|
assert "Generated output file" in result.stdout
|
|
out_files = os.listdir(d_out)
|
|
assert len(out_files) == 3
|
|
assert "data1.spacy" in out_files
|
|
assert "data2.spacy" in out_files
|
|
assert "data3.spacy" in out_files
|
|
|
|
|
|
def test_convert_auto_conflict():
|
|
with make_tempdir() as d_in, make_tempdir() as d_out:
|
|
for f in ["data1.iob", "data2.iob", "data3.json"]:
|
|
Path(d_in / f).touch()
|
|
|
|
# ensure that "automatic" suffix detection warns when there are different file types
|
|
result = CliRunner().invoke(app, ["convert", str(d_in), str(d_out)])
|
|
assert "All input files must be same type" in result.stdout
|
|
out_files = os.listdir(d_out)
|
|
assert len(out_files) == 0
|
|
|
|
|
|
def test_benchmark_accuracy_alias():
|
|
# Verify that the `evaluate` alias works correctly.
|
|
result_benchmark = CliRunner().invoke(app, ["benchmark", "accuracy", "--help"])
|
|
result_evaluate = CliRunner().invoke(app, ["evaluate", "--help"])
|
|
assert normalize_whitespace(result_benchmark.stdout) == normalize_whitespace(
|
|
result_evaluate.stdout.replace("spacy evaluate", "spacy benchmark accuracy")
|
|
)
|
|
|
|
|
|
def test_debug_data_trainable_lemmatizer_cli(en_vocab):
|
|
train_docs = [
|
|
Doc(en_vocab, words=["I", "like", "cats"], lemmas=["I", "like", "cat"]),
|
|
Doc(
|
|
en_vocab,
|
|
words=["Dogs", "are", "great", "too"],
|
|
lemmas=["dog", "be", "great", "too"],
|
|
),
|
|
]
|
|
dev_docs = [
|
|
Doc(en_vocab, words=["Cats", "are", "cute"], lemmas=["cat", "be", "cute"]),
|
|
Doc(en_vocab, words=["Pets", "are", "great"], lemmas=["pet", "be", "great"]),
|
|
]
|
|
with make_tempdir() as d_in:
|
|
train_bin = DocBin(docs=train_docs)
|
|
train_bin.to_disk(d_in / "train.spacy")
|
|
dev_bin = DocBin(docs=dev_docs)
|
|
dev_bin.to_disk(d_in / "dev.spacy")
|
|
# `debug data` requires an input pipeline config
|
|
CliRunner().invoke(
|
|
app,
|
|
[
|
|
"init",
|
|
"config",
|
|
f"{d_in}/config.cfg",
|
|
"--lang",
|
|
"en",
|
|
"--pipeline",
|
|
"trainable_lemmatizer",
|
|
],
|
|
)
|
|
result_debug_data = CliRunner().invoke(
|
|
app,
|
|
[
|
|
"debug",
|
|
"data",
|
|
f"{d_in}/config.cfg",
|
|
"--paths.train",
|
|
f"{d_in}/train.spacy",
|
|
"--paths.dev",
|
|
f"{d_in}/dev.spacy",
|
|
],
|
|
)
|
|
# Instead of checking specific wording of the output, which may change,
|
|
# we'll check that this section of the debug output is present.
|
|
assert "= Trainable Lemmatizer =" in result_debug_data.stdout
|
|
|
|
|
|
# project tests
|
|
|
|
CFG_FILE = "myconfig.cfg"
|
|
|
|
SAMPLE_PROJECT = {
|
|
"title": "Sample project",
|
|
"description": "This is a project for testing",
|
|
"assets": [
|
|
{
|
|
"dest": "assets/spacy-readme.md",
|
|
"url": "https://github.com/explosion/spaCy/raw/dec81508d28b47f09a06203c472b37f00db6c869/README.md",
|
|
"checksum": "411b2c89ccf34288fae8ed126bf652f7",
|
|
},
|
|
{
|
|
"dest": "assets/citation.cff",
|
|
"url": "https://github.com/explosion/spaCy/raw/master/CITATION.cff",
|
|
"checksum": "c996bfd80202d480eb2e592369714e5e",
|
|
"extra": True,
|
|
},
|
|
],
|
|
"commands": [
|
|
{
|
|
"name": "ok",
|
|
"help": "print ok",
|
|
"script": ["python -c \"print('okokok')\""],
|
|
},
|
|
{
|
|
"name": "create",
|
|
"help": "make a file",
|
|
"script": [f"python -m spacy init config {CFG_FILE}"],
|
|
"outputs": [f"{CFG_FILE}"],
|
|
},
|
|
],
|
|
}
|
|
|
|
SAMPLE_PROJECT_TEXT = srsly.yaml_dumps(SAMPLE_PROJECT)
|
|
|
|
|
|
@pytest.fixture
|
|
def project_dir():
|
|
with make_tempdir() as pdir:
|
|
(pdir / "project.yml").write_text(SAMPLE_PROJECT_TEXT)
|
|
yield pdir
|
|
|
|
|
|
def test_project_document(project_dir):
|
|
readme_path = project_dir / "README.md"
|
|
assert not readme_path.exists(), "README already exists"
|
|
result = CliRunner().invoke(
|
|
app, ["project", "document", str(project_dir), "-o", str(readme_path)]
|
|
)
|
|
assert result.exit_code == 0
|
|
assert readme_path.is_file()
|
|
text = readme_path.read_text("utf-8")
|
|
assert SAMPLE_PROJECT["description"] in text
|
|
|
|
|
|
def test_project_assets(project_dir):
|
|
asset_dir = project_dir / "assets"
|
|
assert not asset_dir.exists(), "Assets dir is already present"
|
|
result = CliRunner().invoke(app, ["project", "assets", str(project_dir)])
|
|
assert result.exit_code == 0
|
|
assert (asset_dir / "spacy-readme.md").is_file(), "Assets not downloaded"
|
|
# check that extras work
|
|
result = CliRunner().invoke(app, ["project", "assets", "--extra", str(project_dir)])
|
|
assert result.exit_code == 0
|
|
assert (asset_dir / "citation.cff").is_file(), "Extras not downloaded"
|
|
|
|
|
|
def test_project_run(project_dir):
|
|
# make sure dry run works
|
|
test_file = project_dir / CFG_FILE
|
|
result = CliRunner().invoke(
|
|
app, ["project", "run", "--dry", "create", str(project_dir)]
|
|
)
|
|
assert result.exit_code == 0
|
|
assert not test_file.is_file()
|
|
result = CliRunner().invoke(app, ["project", "run", "create", str(project_dir)])
|
|
assert result.exit_code == 0
|
|
assert test_file.is_file()
|
|
result = CliRunner().invoke(app, ["project", "run", "ok", str(project_dir)])
|
|
assert result.exit_code == 0
|
|
assert "okokok" in result.stdout
|
|
|
|
|
|
@pytest.mark.skipif(not has_git(), reason="git not installed")
|
|
@pytest.mark.parametrize(
|
|
"options",
|
|
[
|
|
"",
|
|
# "--sparse",
|
|
"--branch v3",
|
|
"--repo https://github.com/explosion/projects --branch v3",
|
|
],
|
|
)
|
|
def test_project_clone(options):
|
|
with make_tempdir() as workspace:
|
|
out = workspace / "project"
|
|
target = "benchmarks/ner_conll03"
|
|
if not options:
|
|
options = []
|
|
else:
|
|
options = options.split()
|
|
result = CliRunner().invoke(
|
|
app, ["project", "clone", target, *options, str(out)]
|
|
)
|
|
assert result.exit_code == 0
|
|
assert (out / "README.md").is_file()
|
|
|
|
|
|
def test_project_push_pull(project_dir):
|
|
proj = dict(SAMPLE_PROJECT)
|
|
remote = "xyz"
|
|
|
|
with make_tempdir() as remote_dir:
|
|
proj["remotes"] = {remote: str(remote_dir)}
|
|
proj_text = srsly.yaml_dumps(proj)
|
|
(project_dir / "project.yml").write_text(proj_text)
|
|
|
|
test_file = project_dir / CFG_FILE
|
|
result = CliRunner().invoke(app, ["project", "run", "create", str(project_dir)])
|
|
assert result.exit_code == 0
|
|
assert test_file.is_file()
|
|
result = CliRunner().invoke(app, ["project", "push", remote, str(project_dir)])
|
|
assert result.exit_code == 0
|
|
test_file.unlink()
|
|
assert not test_file.exists()
|
|
result = CliRunner().invoke(app, ["project", "pull", remote, str(project_dir)])
|
|
assert result.exit_code == 0
|
|
assert test_file.is_file()
|
|
|
|
|
|
def test_find_function_valid():
|
|
# example of architecture in main code base
|
|
function = "spacy.TextCatBOW.v3"
|
|
result = CliRunner().invoke(app, ["find-function", function, "-r", "architectures"])
|
|
assert f"Found registered function '{function}'" in result.stdout
|
|
assert "textcat.py" in result.stdout
|
|
|
|
result = CliRunner().invoke(app, ["find-function", function])
|
|
assert f"Found registered function '{function}'" in result.stdout
|
|
assert "textcat.py" in result.stdout
|
|
|
|
# example of architecture in spacy-legacy
|
|
function = "spacy.TextCatBOW.v1"
|
|
result = CliRunner().invoke(app, ["find-function", function])
|
|
assert f"Found registered function '{function}'" in result.stdout
|
|
assert "spacy_legacy" in result.stdout
|
|
assert "textcat.py" in result.stdout
|
|
|
|
|
|
def test_find_function_invalid():
|
|
# invalid registry
|
|
function = "spacy.TextCatBOW.v3"
|
|
registry = "foobar"
|
|
result = CliRunner().invoke(
|
|
app, ["find-function", function, "--registry", registry]
|
|
)
|
|
assert f"Unknown function registry: '{registry}'" in result.stdout
|
|
|
|
# invalid function
|
|
function = "spacy.TextCatBOW.v666"
|
|
result = CliRunner().invoke(app, ["find-function", function])
|
|
assert f"Couldn't find registered function: '{function}'" in result.stdout
|
|
|
|
|
|
example_words_1 = ["I", "like", "cats"]
|
|
example_words_2 = ["I", "like", "dogs"]
|
|
example_lemmas_1 = ["I", "like", "cat"]
|
|
example_lemmas_2 = ["I", "like", "dog"]
|
|
example_tags = ["PRP", "VBP", "NNS"]
|
|
example_morphs = [
|
|
"Case=Nom|Number=Sing|Person=1|PronType=Prs",
|
|
"Tense=Pres|VerbForm=Fin",
|
|
"Number=Plur",
|
|
]
|
|
example_deps = ["nsubj", "ROOT", "dobj"]
|
|
example_pos = ["PRON", "VERB", "NOUN"]
|
|
example_ents = ["O", "O", "I-ANIMAL"]
|
|
example_spans = [(2, 3, "ANIMAL")]
|
|
|
|
TRAIN_EXAMPLE_1 = dict(
|
|
words=example_words_1,
|
|
lemmas=example_lemmas_1,
|
|
tags=example_tags,
|
|
morphs=example_morphs,
|
|
deps=example_deps,
|
|
heads=[1, 1, 1],
|
|
pos=example_pos,
|
|
ents=example_ents,
|
|
spans=example_spans,
|
|
cats={"CAT": 1.0, "DOG": 0.0},
|
|
)
|
|
TRAIN_EXAMPLE_2 = dict(
|
|
words=example_words_2,
|
|
lemmas=example_lemmas_2,
|
|
tags=example_tags,
|
|
morphs=example_morphs,
|
|
deps=example_deps,
|
|
heads=[1, 1, 1],
|
|
pos=example_pos,
|
|
ents=example_ents,
|
|
spans=example_spans,
|
|
cats={"CAT": 0.0, "DOG": 1.0},
|
|
)
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize(
|
|
"component,examples",
|
|
[
|
|
("tagger", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
|
|
("morphologizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
|
|
("trainable_lemmatizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
|
|
("parser", [TRAIN_EXAMPLE_1] * 30),
|
|
("ner", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
|
|
("spancat", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
|
|
("textcat", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
|
|
],
|
|
)
|
|
def test_init_config_trainable(component, examples, en_vocab):
|
|
if component == "textcat":
|
|
train_docs = []
|
|
for example in examples:
|
|
doc = Doc(en_vocab, words=example["words"])
|
|
doc.cats = example["cats"]
|
|
train_docs.append(doc)
|
|
elif component == "spancat":
|
|
train_docs = []
|
|
for example in examples:
|
|
doc = Doc(en_vocab, words=example["words"])
|
|
doc.spans["sc"] = [
|
|
Span(doc, start, end, label) for start, end, label in example["spans"]
|
|
]
|
|
train_docs.append(doc)
|
|
else:
|
|
train_docs = []
|
|
for example in examples:
|
|
# cats, spans are not valid kwargs for instantiating a Doc
|
|
example = {k: v for k, v in example.items() if k not in ("cats", "spans")}
|
|
doc = Doc(en_vocab, **example)
|
|
train_docs.append(doc)
|
|
|
|
with make_tempdir() as d_in:
|
|
train_bin = DocBin(docs=train_docs)
|
|
train_bin.to_disk(d_in / "train.spacy")
|
|
dev_bin = DocBin(docs=train_docs)
|
|
dev_bin.to_disk(d_in / "dev.spacy")
|
|
init_config_result = CliRunner().invoke(
|
|
app,
|
|
[
|
|
"init",
|
|
"config",
|
|
f"{d_in}/config.cfg",
|
|
"--lang",
|
|
"en",
|
|
"--pipeline",
|
|
component,
|
|
],
|
|
)
|
|
assert init_config_result.exit_code == 0
|
|
train_result = CliRunner().invoke(
|
|
app,
|
|
[
|
|
"train",
|
|
f"{d_in}/config.cfg",
|
|
"--paths.train",
|
|
f"{d_in}/train.spacy",
|
|
"--paths.dev",
|
|
f"{d_in}/dev.spacy",
|
|
"--output",
|
|
f"{d_in}/model",
|
|
],
|
|
)
|
|
assert train_result.exit_code == 0
|
|
assert Path(d_in / "model" / "model-last").exists()
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize(
|
|
"component,examples",
|
|
[("tagger,parser,morphologizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2] * 15)],
|
|
)
|
|
def test_init_config_trainable_multiple(component, examples, en_vocab):
|
|
train_docs = []
|
|
for example in examples:
|
|
example = {k: v for k, v in example.items() if k not in ("cats", "spans")}
|
|
doc = Doc(en_vocab, **example)
|
|
train_docs.append(doc)
|
|
|
|
with make_tempdir() as d_in:
|
|
train_bin = DocBin(docs=train_docs)
|
|
train_bin.to_disk(d_in / "train.spacy")
|
|
dev_bin = DocBin(docs=train_docs)
|
|
dev_bin.to_disk(d_in / "dev.spacy")
|
|
init_config_result = CliRunner().invoke(
|
|
app,
|
|
[
|
|
"init",
|
|
"config",
|
|
f"{d_in}/config.cfg",
|
|
"--lang",
|
|
"en",
|
|
"--pipeline",
|
|
component,
|
|
],
|
|
)
|
|
assert init_config_result.exit_code == 0
|
|
train_result = CliRunner().invoke(
|
|
app,
|
|
[
|
|
"train",
|
|
f"{d_in}/config.cfg",
|
|
"--paths.train",
|
|
f"{d_in}/train.spacy",
|
|
"--paths.dev",
|
|
f"{d_in}/dev.spacy",
|
|
"--output",
|
|
f"{d_in}/model",
|
|
],
|
|
)
|
|
assert train_result.exit_code == 0
|
|
assert Path(d_in / "model" / "model-last").exists()
|