spaCy/spacy/ml/models/coref.py
2022-07-12 12:56:10 +09:00

384 lines
14 KiB
Python

from typing import List, Tuple, Callable, cast
from thinc.api import Model, chain, get_width
from thinc.api import PyTorchWrapper, ArgsKwargs
from thinc.types import Floats2d, Ints2d
from thinc.util import torch, xp2torch, torch2xp
from ...tokens import Doc
from ...util import registry
EPSILON = 1e-7
@registry.architectures("spacy.Coref.v1")
def build_wl_coref_model(
tok2vec: Model[List[Doc], List[Floats2d]],
distance_embedding_size: int = 20,
hidden_size: int = 1024,
depth: int = 1,
dropout: float = 0.3,
# pairs to keep per mention after rough scoring
antecedent_limit: int = 50,
antecedent_batch_size: int = 512,
nI=None,
) -> Model[List[Doc], Tuple[Floats2d, Ints2d]]:
with Model.define_operators({">>": chain}):
coref_clusterer: Model[List[Floats2d], Tuple[Floats2d, Ints2d]] = Model(
"coref_clusterer",
forward=coref_forward,
init=coref_init,
dims={"nI": nI},
attrs={
"distance_embedding_size": distance_embedding_size,
"hidden_size": hidden_size,
"depth": depth,
"dropout": dropout,
"antecedent_limit": antecedent_limit,
"antecedent_batch_size": antecedent_batch_size,
},
)
model = tok2vec >> coref_clusterer
model.set_ref("coref_clusterer", coref_clusterer)
return model
def coref_init(model: Model, X=None, Y=None):
if model.layers:
return
if X is not None and model.has_dim("nI") is None:
model.set_dim("nI", get_width(X))
hidden_size = model.attrs["hidden_size"]
depth = model.attrs["depth"]
dropout = model.attrs["dropout"]
antecedent_limit = model.attrs["antecedent_limit"]
antecedent_batch_size = model.attrs["antecedent_batch_size"]
distance_embedding_size = model.attrs["distance_embedding_size"]
model._layers = [
PyTorchWrapper(
CorefClusterer(
model.get_dim("nI"),
distance_embedding_size,
hidden_size,
depth,
dropout,
antecedent_limit,
antecedent_batch_size,
),
convert_inputs=convert_coref_clusterer_inputs,
convert_outputs=convert_coref_clusterer_outputs,
)
# TODO maybe we need mixed precision and grad scaling?
]
def coref_forward(model: Model, X, is_train: bool):
return model.layers[0](X, is_train)
def convert_coref_clusterer_inputs(model: Model, X: List[Floats2d], is_train: bool):
# The input here is List[Floats2d], one for each doc
# just use the first
# TODO real batching
X = X[0]
word_features = xp2torch(X, requires_grad=is_train)
def backprop(args: ArgsKwargs) -> List[Floats2d]:
# convert to xp and wrap in list
gradients = cast(Floats2d, torch2xp(args.args[0]))
return [gradients]
return ArgsKwargs(args=(word_features,), kwargs={}), backprop
def convert_coref_clusterer_outputs(
model: Model, inputs_outputs, is_train: bool
) -> Tuple[Tuple[Floats2d, Ints2d], Callable]:
_, outputs = inputs_outputs
scores, indices = outputs
def convert_for_torch_backward(dY: Floats2d) -> ArgsKwargs:
dY_t = xp2torch(dY[0])
return ArgsKwargs(
args=([scores],),
kwargs={"grad_tensors": [dY_t]},
)
scores_xp = cast(Floats2d, torch2xp(scores))
indices_xp = cast(Ints2d, torch2xp(indices))
return (scores_xp, indices_xp), convert_for_torch_backward
class CorefClusterer(torch.nn.Module):
"""
Combines all coref modules together to find coreferent token pairs.
Submodules (in the order of their usage in the pipeline):
- rough_scorer (RoughScorer) that prunes candidate pairs
- pw (DistancePairwiseEncoder) that computes pairwise features
- a_scorer (AnaphoricityScorer) produces the final scores
"""
def __init__(
self,
dim: int,
dist_emb_size: int,
hidden_size: int,
n_layers: int,
dropout: float,
roughk: int,
batch_size: int,
):
super().__init__()
"""
dim: Size of the input features.
dist_emb_size: Size of the distance embeddings.
hidden_size: Size of the coreference candidate embeddings.
n_layers: Numbers of layers in the AnaphoricityScorer.
dropout: Dropout probability to apply across all modules.
roughk: Number of candidates the RoughScorer returns.
batch_size: Internal batch-size for the more expensive scorer.
"""
self.dropout = torch.nn.Dropout(dropout)
self.batch_size = batch_size
self.pw = DistancePairwiseEncoder(dist_emb_size, dropout)
pair_emb = dim * 3 + self.pw.shape
self.a_scorer = AnaphoricityScorer(pair_emb, hidden_size, n_layers, dropout)
self.lstm = torch.nn.LSTM(
input_size=dim,
hidden_size=dim,
batch_first=True,
)
self.rough_scorer = RoughScorer(dim, dropout, roughk)
def forward(self, word_features: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
1. LSTM encodes the incoming word_features.
2. The RoughScorer scores and prunes the candidates.
3. The DistancePairwiseEncoder embeds the distances between pairs.
4. The AnaphoricityScorer scores all pairs in mini-batches.
word_features: torch.Tensor containing word encodings
returns:
coref_scores: n_words x roughk floats.
top_indices: n_words x roughk integers.
"""
self.lstm.flatten_parameters() # XXX without this there's a warning
word_features = torch.unsqueeze(word_features, dim=0)
words, _ = self.lstm(word_features)
words = words.squeeze()
# words: n_words x dim
words = self.dropout(words)
# Obtain bilinear scores and leave only top-k antecedents for each word
# top_rough_scores: (n_words x roughk)
# top_indices: (n_words x roughk)
top_rough_scores, top_indices = self.rough_scorer(words)
# Get pairwise features
# (n_words x roughk x n_pw_features)
pw = self.pw(top_indices)
batch_size = self.batch_size
a_scores_lst: List[torch.Tensor] = []
for i in range(0, len(words), batch_size):
pw_batch = pw[i : i + batch_size]
words_batch = words[i : i + batch_size]
top_indices_batch = top_indices[i : i + batch_size]
top_rough_scores_batch = top_rough_scores[i : i + batch_size]
# a_scores_batch [batch_size, n_ants]
a_scores_batch = self.a_scorer(
all_mentions=words,
mentions_batch=words_batch,
pw_batch=pw_batch,
top_indices_batch=top_indices_batch,
top_rough_scores_batch=top_rough_scores_batch,
)
a_scores_lst.append(a_scores_batch)
coref_scores = torch.cat(a_scores_lst, dim=0)
return coref_scores, top_indices
# Note this function is kept here to keep a torch dep out of coref_util.
def add_dummy(tensor: torch.Tensor, eps: bool = False):
"""Prepends zeros (or a very small value if eps is True)
to the first (not zeroth) dimension of tensor.
"""
kwargs = dict(device=tensor.device, dtype=tensor.dtype)
shape: List[int] = list(tensor.shape)
shape[1] = 1
if not eps:
dummy = torch.zeros(shape, **kwargs) # type: ignore
else:
dummy = torch.full(shape, EPSILON, **kwargs) # type: ignore
output = torch.cat((dummy, tensor), dim=1)
return output
class AnaphoricityScorer(torch.nn.Module):
"""Calculates anaphoricity scores by passing the inputs into a FFNN"""
def __init__(self, in_features: int, hidden_size, depth, dropout):
super().__init__()
hidden_size = hidden_size
if not depth:
hidden_size = in_features
layers = []
for i in range(depth):
layers.extend(
[
torch.nn.Linear(hidden_size if i else in_features, hidden_size),
torch.nn.LeakyReLU(),
torch.nn.Dropout(dropout),
]
)
self.hidden = torch.nn.Sequential(*layers)
self.out = torch.nn.Linear(hidden_size, out_features=1)
def forward(
self,
*, # type: ignore # pylint: disable=arguments-differ #35566 in pytorch
all_mentions: torch.Tensor,
mentions_batch: torch.Tensor,
pw_batch: torch.Tensor,
top_indices_batch: torch.Tensor,
top_rough_scores_batch: torch.Tensor,
) -> torch.Tensor:
"""Builds a pairwise matrix, scores the pairs and returns the scores.
Args:
all_mentions (torch.Tensor): [n_mentions, mention_emb]
mentions_batch (torch.Tensor): [batch_size, mention_emb]
pw_batch (torch.Tensor): [batch_size, n_ants, pw_emb]
top_indices_batch (torch.Tensor): [batch_size, n_ants]
top_rough_scores_batch (torch.Tensor): [batch_size, n_ants]
Returns:
torch.Tensor [batch_size, n_ants + 1]
anaphoricity scores for the pairs + a dummy column
"""
# [batch_size, n_ants, pair_emb]
pair_matrix = self._get_pair_matrix(
all_mentions, mentions_batch, pw_batch, top_indices_batch
)
# [batch_size, n_ants]
scores = top_rough_scores_batch + self._ffnn(pair_matrix)
scores = add_dummy(scores, eps=True)
return scores
def _ffnn(self, x: torch.Tensor) -> torch.Tensor:
"""
x: tensor of shape (batch_size x roughk x n_features
returns: tensor of shape (batch_size x antecedent_limit)
"""
x = self.out(self.hidden(x))
return x.squeeze(2)
@staticmethod
def _get_pair_matrix(
all_mentions: torch.Tensor,
mentions_batch: torch.Tensor,
pw_batch: torch.Tensor,
top_indices_batch: torch.Tensor,
) -> torch.Tensor:
"""
Builds the matrix used as input for AnaphoricityScorer.
all_mentions: (n_mentions x mention_emb),
all the valid mentions of the document,
can be on a different device
mentions_batch: (batch_size x mention_emb),
the mentions of the current batch.
pw_batch: (batch_size x roughk x pw_emb),
pairwise distance features of the current batch.
top_indices_batch: (batch_size x n_ants),
indices of antecedents of each mention
Returns:
out: pairwise features (batch_size x n_ants x pair_emb)
"""
emb_size = mentions_batch.shape[1]
n_ants = pw_batch.shape[1]
a_mentions = mentions_batch.unsqueeze(1).expand(-1, n_ants, emb_size)
b_mentions = all_mentions[top_indices_batch]
similarity = a_mentions * b_mentions
out = torch.cat((a_mentions, b_mentions, similarity, pw_batch), dim=2)
return out
class RoughScorer(torch.nn.Module):
"""
Cheaper module that gives a rough estimate of the anaphoricity of two
candidates, only top scoring candidates are considered on later
steps to reduce computational cost.
"""
def __init__(self, features: int, dropout: float, antecedent_limit: int):
super().__init__()
self.dropout = torch.nn.Dropout(dropout)
self.bilinear = torch.nn.Linear(features, features)
self.k = antecedent_limit
def forward(
self, # type: ignore
mentions: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns rough anaphoricity scores for candidates, which consist of
the bilinear output of the current model summed with mention scores.
"""
# [n_mentions, n_mentions]
pair_mask = torch.arange(mentions.shape[0])
pair_mask = pair_mask.unsqueeze(1) - pair_mask.unsqueeze(0)
pair_mask = torch.log((pair_mask > 0).to(torch.float))
pair_mask = pair_mask.to(mentions.device)
bilinear_scores = self.dropout(self.bilinear(mentions)).mm(mentions.T)
rough_scores = pair_mask + bilinear_scores
top_scores, indices = torch.topk(
rough_scores, k=min(self.k, len(rough_scores)), dim=1, sorted=False
)
return top_scores, indices
class DistancePairwiseEncoder(torch.nn.Module):
def __init__(self, distance_embedding_size, dropout):
"""
Takes the top_indices indicating, which is a ranked
list for each word and its most likely corresponding
anaphora candidates. For each of these pairs it looks
up a distance embedding from a table, where the distance
corresponds to the log-distance.
distance_embedding_size: int,
Dimensionality of the distance-embeddings table.
dropout: float,
Dropout probability.
"""
super().__init__()
emb_size = distance_embedding_size
self.distance_emb = torch.nn.Embedding(9, emb_size)
self.dropout = torch.nn.Dropout(dropout)
self.shape = emb_size
def forward(self, top_indices: torch.Tensor) -> torch.Tensor:
word_ids = torch.arange(0, top_indices.size(0))
distance = (word_ids.unsqueeze(1) - word_ids[top_indices]).clamp_min_(min=1)
log_distance = distance.to(torch.float).log2().floor_()
log_distance = log_distance.clamp_max_(max=6).to(torch.long)
distance = torch.where(distance < 5, distance - 1, log_distance + 2)
distance = distance.to(top_indices.device)
distance = self.distance_emb(distance)
return self.dropout(distance)