mirror of
https://github.com/explosion/spaCy.git
synced 2025-10-02 18:06:46 +03:00
397 lines
13 KiB
Python
397 lines
13 KiB
Python
from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
|
|
import warnings
|
|
|
|
from thinc.types import Floats2d, Floats3d, Ints2d
|
|
from thinc.api import Model, Config, Optimizer
|
|
from thinc.api import set_dropout_rate, to_categorical
|
|
from itertools import islice
|
|
from statistics import mean
|
|
import srsly
|
|
|
|
from .trainable_pipe import TrainablePipe
|
|
from ..language import Language
|
|
from ..training import Example, validate_examples, validate_get_examples
|
|
from ..errors import Errors
|
|
from ..tokens import Doc
|
|
from ..vocab import Vocab
|
|
from ..util import registry, from_disk, from_bytes
|
|
|
|
from ..ml.models.coref_util import (
|
|
create_gold_scores,
|
|
MentionClusters,
|
|
create_head_span_idxs,
|
|
get_clusters_from_doc,
|
|
get_predicted_clusters,
|
|
DEFAULT_CLUSTER_PREFIX,
|
|
)
|
|
|
|
from ..scorer import Scorer
|
|
|
|
|
|
default_config = """
|
|
[model]
|
|
@architectures = "spacy.Coref.v1"
|
|
distance_embedding_size = 20
|
|
hidden_size = 1024
|
|
depth = 1
|
|
dropout = 0.3
|
|
antecedent_limit = 50
|
|
antecedent_batch_size = 512
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.Tok2Vec.v2"
|
|
|
|
[model.tok2vec.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
width = 64
|
|
rows = [2000, 2000, 1000, 1000, 1000, 1000]
|
|
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
|
|
include_static_vectors = false
|
|
|
|
[model.tok2vec.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
|
width = ${model.tok2vec.embed.width}
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
depth = 2
|
|
"""
|
|
DEFAULT_COREF_MODEL = Config().from_str(default_config)["model"]
|
|
|
|
|
|
def coref_scorer(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|
return Scorer.score_coref_clusters(examples, **kwargs)
|
|
|
|
|
|
@registry.scorers("spacy.coref_scorer.v1")
|
|
def make_coref_scorer():
|
|
return coref_scorer
|
|
|
|
|
|
@Language.factory(
|
|
"coref",
|
|
assigns=["doc.spans"],
|
|
requires=["doc.spans"],
|
|
default_config={
|
|
"model": DEFAULT_COREF_MODEL,
|
|
"span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
|
|
"scorer": {"@scorers": "spacy.coref_scorer.v1"},
|
|
},
|
|
default_score_weights={"coref_f": 1.0, "coref_p": None, "coref_r": None},
|
|
)
|
|
def make_coref(
|
|
nlp: Language,
|
|
name: str,
|
|
model,
|
|
scorer: Optional[Callable],
|
|
span_cluster_prefix: str,
|
|
) -> "CoreferenceResolver":
|
|
"""Create a CoreferenceResolver component."""
|
|
|
|
return CoreferenceResolver(
|
|
nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix, scorer=scorer
|
|
)
|
|
|
|
|
|
class CoreferenceResolver(TrainablePipe):
|
|
"""Pipeline component for coreference resolution.
|
|
|
|
DOCS: https://spacy.io/api/coref
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab: Vocab,
|
|
model: Model,
|
|
name: str = "coref",
|
|
*,
|
|
span_mentions: str = "coref_mentions",
|
|
span_cluster_prefix: str = DEFAULT_CLUSTER_PREFIX,
|
|
scorer: Optional[Callable] = coref_scorer,
|
|
) -> None:
|
|
"""Initialize a coreference resolution component.
|
|
|
|
vocab (Vocab): The shared vocabulary.
|
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
|
name (str): The component instance name, used to add entries to the
|
|
losses during training.
|
|
span_mentions (str): Key in doc.spans where the candidate coref mentions
|
|
are stored in.
|
|
span_cluster_prefix (str): Prefix for the key in doc.spans to store the
|
|
coref clusters in.
|
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
|
Scorer.score_coref_clusters.
|
|
|
|
DOCS: https://spacy.io/api/coref#init
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self.span_mentions = span_mentions
|
|
self.span_cluster_prefix = span_cluster_prefix
|
|
self._rehearsal_model = None
|
|
|
|
self.cfg: Dict[str, Any] = {"span_cluster_prefix": span_cluster_prefix}
|
|
self.scorer = scorer
|
|
|
|
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
|
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
|
Return the list of predicted clusters.
|
|
|
|
docs (Iterable[Doc]): The documents to predict.
|
|
RETURNS (List[MentionClusters]): The model's prediction for each document.
|
|
|
|
DOCS: https://spacy.io/api/coref#predict
|
|
"""
|
|
out = []
|
|
for doc in docs:
|
|
scores, idxs = self.model.predict([doc])
|
|
# idxs is a list of mentions (start / end idxs)
|
|
# each item in scores includes scores and a mapping from scores to mentions
|
|
ant_idxs = idxs
|
|
|
|
# TODO batching
|
|
xp = self.model.ops.xp
|
|
|
|
starts = xp.arange(0, len(doc))
|
|
ends = xp.arange(0, len(doc)) + 1
|
|
|
|
predicted = get_predicted_clusters(xp, starts, ends, ant_idxs, scores)
|
|
out.append(predicted)
|
|
|
|
return out
|
|
|
|
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
|
|
"""Modify a batch of Doc objects, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
clusters: The span clusters, produced by CoreferenceResolver.predict.
|
|
|
|
DOCS: https://spacy.io/api/coref#set_annotations
|
|
"""
|
|
docs = list(docs)
|
|
if len(docs) != len(clusters_by_doc):
|
|
raise ValueError(
|
|
"Found coref clusters incompatible with the "
|
|
"documents provided to the 'coref' component. "
|
|
"This is likely a bug in spaCy."
|
|
)
|
|
for doc, clusters in zip(docs, clusters_by_doc):
|
|
for ii, cluster in enumerate(clusters):
|
|
key = self.span_cluster_prefix + "_" + str(ii)
|
|
if key in doc.spans:
|
|
raise ValueError(
|
|
"Found coref clusters incompatible with the "
|
|
"documents provided to the 'coref' component. "
|
|
"This is likely a bug in spaCy."
|
|
)
|
|
|
|
doc.spans[key] = []
|
|
for mention in cluster:
|
|
doc.spans[key].append(doc[mention[0] : mention[1]])
|
|
|
|
def update(
|
|
self,
|
|
examples: Iterable[Example],
|
|
*,
|
|
drop: float = 0.0,
|
|
sgd: Optional[Optimizer] = None,
|
|
losses: Optional[Dict[str, float]] = None,
|
|
) -> Dict[str, float]:
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model. Delegates to predict and get_loss.
|
|
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/coref#update
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "CoreferenceResolver.update")
|
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
|
|
total_loss = 0
|
|
|
|
for eg in examples:
|
|
if eg.x.text != eg.y.text:
|
|
# TODO assign error number
|
|
raise ValueError(
|
|
"""Text, including whitespace, must match between reference and
|
|
predicted docs in coref training.
|
|
"""
|
|
)
|
|
preds, backprop = self.model.begin_update([eg.predicted])
|
|
score_matrix, mention_idx = preds
|
|
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
|
|
total_loss += loss
|
|
backprop((d_scores, mention_idx))
|
|
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += total_loss
|
|
return losses
|
|
|
|
def rehearse(self, examples, *, sgd=None, losses=None, **config):
|
|
# TODO this should be added later
|
|
raise NotImplementedError(
|
|
Errors.E931.format(
|
|
parent="CoreferenceResolver", method="add_label", name=self.name
|
|
)
|
|
)
|
|
|
|
def add_label(self, label: str) -> int:
|
|
"""Technically this method should be implemented from TrainablePipe,
|
|
but it is not relevant for the coref component.
|
|
"""
|
|
raise NotImplementedError(
|
|
Errors.E931.format(
|
|
parent="CoreferenceResolver", method="add_label", name=self.name
|
|
)
|
|
)
|
|
|
|
def get_loss(
|
|
self,
|
|
examples: Iterable[Example],
|
|
score_matrix: Floats2d,
|
|
mention_idx: Ints2d,
|
|
):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/coref#get_loss
|
|
"""
|
|
ops = self.model.ops
|
|
xp = ops.xp
|
|
|
|
# TODO if there is more than one example, give an error
|
|
# (or actually rework this to take multiple things)
|
|
example = list(examples)[0]
|
|
cidx = mention_idx
|
|
|
|
clusters_by_char = get_clusters_from_doc(example.reference)
|
|
# convert to token clusters, and give up if necessary
|
|
clusters = []
|
|
for cluster in clusters_by_char:
|
|
cc = []
|
|
for start_char, end_char in cluster:
|
|
span = example.predicted.char_span(start_char, end_char)
|
|
if span is None:
|
|
# TODO log more details
|
|
raise IndexError(Errors.E1044)
|
|
cc.append((span.start, span.end))
|
|
clusters.append(cc)
|
|
|
|
span_idxs = create_head_span_idxs(ops, len(example.predicted))
|
|
gscores = create_gold_scores(span_idxs, clusters)
|
|
# Note on type here. This is bools but asarray2f wants ints.
|
|
gscores = ops.asarray2f(gscores) # type: ignore
|
|
top_gscores = xp.take_along_axis(gscores, mention_idx, axis=1)
|
|
# now add the placeholder
|
|
gold_placeholder = ~top_gscores.any(axis=1).T
|
|
gold_placeholder = xp.expand_dims(gold_placeholder, 1)
|
|
top_gscores = xp.concatenate((gold_placeholder, top_gscores), 1)
|
|
|
|
# boolean to float
|
|
top_gscores = ops.asarray2f(top_gscores)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
|
log_marg = ops.softmax(score_matrix + ops.xp.log(top_gscores), axis=1)
|
|
log_norm = ops.softmax(score_matrix, axis=1)
|
|
grad = log_norm - log_marg
|
|
loss = float((grad**2).sum())
|
|
|
|
return loss, grad
|
|
|
|
def initialize(
|
|
self,
|
|
get_examples: Callable[[], Iterable[Example]],
|
|
*,
|
|
nlp: Optional[Language] = None,
|
|
) -> None:
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
|
|
DOCS: https://spacy.io/api/coref#initialize
|
|
"""
|
|
validate_get_examples(get_examples, "CoreferenceResolver.initialize")
|
|
|
|
X = []
|
|
Y = []
|
|
for ex in islice(get_examples(), 2):
|
|
X.append(ex.predicted)
|
|
Y.append(ex.reference)
|
|
|
|
assert len(X) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=X, Y=Y)
|
|
|
|
# Store the input dimensionality. nI and nO are not stored explicitly
|
|
# for PyTorch models. This makes it tricky to reconstruct the model
|
|
# during deserialization. So, besides storing the labels, we also
|
|
# store the number of inputs.
|
|
coref_clusterer = self.model.get_ref("coref_clusterer")
|
|
self.cfg["nI"] = coref_clusterer.get_dim("nI")
|
|
|
|
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
|
deserializers = {
|
|
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
|
|
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
|
|
}
|
|
from_bytes(bytes_data, deserializers, exclude)
|
|
|
|
self._initialize_from_disk()
|
|
|
|
model_deserializers = {
|
|
"model": lambda b: self.model.from_bytes(b),
|
|
}
|
|
from_bytes(bytes_data, model_deserializers, exclude)
|
|
|
|
return self
|
|
|
|
def from_disk(self, path, exclude=tuple()):
|
|
def load_model(p):
|
|
try:
|
|
with open(p, "rb") as mfile:
|
|
self.model.from_bytes(mfile.read())
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149) from None
|
|
|
|
deserializers = {
|
|
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
|
|
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
|
|
}
|
|
from_disk(path, deserializers, exclude)
|
|
|
|
self._initialize_from_disk()
|
|
|
|
model_deserializers = {
|
|
"model": load_model,
|
|
}
|
|
from_disk(path, model_deserializers, exclude)
|
|
|
|
return self
|
|
|
|
def _initialize_from_disk(self):
|
|
# The PyTorch model is constructed lazily, so we need to
|
|
# explicitly initialize the model before deserialization.
|
|
model = self.model.get_ref("coref_clusterer")
|
|
if model.has_dim("nI") is None:
|
|
model.set_dim("nI", self.cfg["nI"])
|
|
self.model.initialize()
|