spaCy/spacy/syntax/parser.pyx
2018-10-21 17:28:13 +02:00

516 lines
18 KiB
Cython

"""
MALT-style dependency parser
"""
# coding: utf-8
# cython: infer_types=True
from __future__ import unicode_literals
from collections import Counter
import ujson
cimport cython
cimport cython.parallel
import numpy.random
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
from thinc.extra.eg cimport Example
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
from thinc.extra.search cimport Beam
from .._ml import link_vectors_to_models
from . import nonproj
from .. import util
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from ._state cimport StateC
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from ..gold cimport GoldParse
from ..vocab cimport Vocab
USE_FTRL = True
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
elif name.startswith('embed'):
return (pf.words, pf.tags, pf.labels)
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
cdef class ParserModel(AveragedPerceptron):
@property
def nr_templ(self):
return self.extracter.nr_templ
cdef int set_featuresC(self, atom_t* context, FeatureC* features,
const StateC* state) nogil:
fill_context(context, state)
nr_feat = self.extracter.set_features(features, context)
return nr_feat
def update(self, Example eg, itn=0):
self.time += 1
cdef int best = arg_max_if_gold(eg.c.scores, eg.c.costs, eg.c.nr_class)
cdef int guess = eg.guess
if guess == best or best == -1:
return 0.0
cdef FeatureC feat
cdef int clas
cdef weight_t gradient
for feat in eg.c.features[:eg.c.nr_feat]:
self.update_weight(feat.key, guess, feat.value * eg.c.costs[guess])
self.update_weight(feat.key, best, -feat.value * eg.c.costs[guess])
return eg.c.costs[guess]
cdef class Parser:
"""
Base class of the DependencyParser and EntityRecognizer.
"""
@classmethod
def Model(cls, nr_class, **cfg):
return ParserModel(get_templates('parser')), cfg
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
"""Create a Parser.
vocab (Vocab): The vocabulary object. Must be shared with documents
to be processed. The value is set to the `.vocab` attribute.
moves (TransitionSystem): Defines how the parse-state is created,
updated and evaluated. The value is set to the .moves attribute
unless True (default), in which case a new instance is created with
`Parser.Moves()`.
model (object): Defines how the parse-state is created, updated and
evaluated. The value is set to the .model attribute unless True
(default), in which case a new instance is created with
`Parser.Model()`.
**cfg: Arbitrary configuration parameters. Set to the `.cfg` attribute
"""
self.vocab = vocab
if moves is True:
self.moves = self.TransitionSystem(self.vocab.strings, {})
else:
self.moves = moves
if 'beam_width' not in cfg:
cfg['beam_width'] = util.env_opt('beam_width', 1)
if 'beam_density' not in cfg:
cfg['beam_density'] = util.env_opt('beam_density', 0.0)
if 'pretrained_dims' not in cfg:
cfg['pretrained_dims'] = self.vocab.vectors.data.shape[1]
cfg.setdefault('cnn_maxout_pieces', 3)
self.cfg = cfg
if 'actions' in self.cfg:
for action, labels in self.cfg.get('actions', {}).items():
for label in labels:
self.moves.add_action(action, label)
self.model = model
if model not in (True, False, None):
self._model = model
self._multitasks = []
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
def __call__(self, Doc doc, beam_width=None, beam_density=None):
"""Apply the parser or entity recognizer, setting the annotations onto
the `Doc` object.
doc (Doc): The document to be processed.
"""
if beam_width is None:
beam_width = self.cfg.get('beam_width', 1)
if beam_density is None:
beam_density = self.cfg.get('beam_density', 0.0)
cdef Beam beam
if beam_width == 1:
states, tokvecs = self.parse_batch([doc])
self.set_annotations([doc], states, tensors=tokvecs)
return doc
else:
beams, tokvecs = self.beam_parse([doc],
beam_width=beam_width,
beam_density=beam_density)
beam = beams[0]
output = self.moves.get_beam_annot(beam)
state = StateClass.borrow(<StateC*>beam.at(0))
self.set_annotations([doc], [state], tensors=tokvecs)
_cleanup(beam)
return output
def parse_batch(self, docs, batch_size=1, n_threads=1):
cdef Pool mem = Pool()
doc_ptr = <TokenC**>mem.alloc(len(docs), sizeof(TokenC*))
lengths = <int*>mem.alloc(len(docs), sizeof(int))
state_ptrs = <StateC**>mem.alloc(len(docs), sizeof(StateC*))
cdef Doc doc
cdef StateClass state
cdef int i
cdef int nr_feat = self.model.nr_feat
states = self.moves.init_batch(docs)
for i, (doc, state) in enumerate(zip(docs, states)):
doc_ptr[i] = doc.c
lengths[i] = doc.length
state_ptrs[i] = state.c
cdef int status
for i in range(len(docs)):
status = self.parseC(state_ptrs[i], doc_ptr[i], lengths[i], nr_feat)
#if status != 0:
# with gil:
# raise ParserStateError(queue[i])
#PyErr_CheckSignals()
return states, None
cdef int parseC(self, StateC* state, TokenC* tokens, int length, int nr_feat) nogil:
cdef int nr_class = self.moves.n_moves
cdef int nr_atom = CONTEXT_SIZE
features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
is_valid = <int*>calloc(sizeof(int), nr_class)
cdef int i
while not state.is_final():
nr_feat = self._model.set_featuresC(atoms, features, state)
self.moves.set_valid(is_valid, state)
self._model.set_scoresC(scores, features, nr_feat)
guess = VecVec.arg_max_if_true(scores, is_valid, nr_class)
if guess < 0:
return 1
action = self.moves.c[guess]
action.do(state, action.label)
memset(scores, 0, sizeof(scores[0]) * nr_class)
for i in range(nr_class):
is_valid[i] = 1
tokens[i] = state._sent[i]
free(features)
free(atoms)
free(scores)
free(is_valid)
return 0
def update(self, docs, golds, drop=0., sgd=None, losses=None):
states = self.moves.init_batch(docs)
cdef GoldParse gold
for gold in golds:
self.moves.preprocess_gold(gold)
cdef StateClass stcls
cdef Pool mem = Pool()
cdef weight_t loss = 0
cdef Transition action
cdef double dropout_rate = self.cfg.get('dropout', drop)
cdef FeatureC feat
cdef int clas
cdef int nr_class = self.moves.n_moves
features = <FeatureC*>mem.alloc(self._model.nr_templ, sizeof(FeatureC))
scores = <weight_t*>mem.alloc(nr_class, sizeof(weight_t))
is_valid = <int*>mem.alloc(nr_class, sizeof(int))
costs = <weight_t*>mem.alloc(nr_class, sizeof(weight_t))
atoms = <atom_t*>mem.alloc(CONTEXT_SIZE, sizeof(atom_t))
states = self.moves.init_batch(docs)
for stcls, gold in zip(states, golds):
while not stcls.is_final():
memset(scores, 0, sizeof(scores[0]) * nr_class)
memset(costs, 0, sizeof(costs[0]) * nr_class)
for i in range(nr_class):
is_valid[i] = 1
nr_feat = self._model.set_featuresC(atoms, features, stcls.c)
dropout(features, nr_feat, dropout_rate)
self.moves.set_costs(is_valid, costs, stcls, gold)
self._model.set_scoresC(scores, features, nr_feat)
self._model.time += 1
guess = VecVec.arg_max_if_true(scores, is_valid, nr_class)
best = arg_max_if_gold(scores, costs, nr_class)
if guess == best or best == -1:
continue
for feat in features[:nr_feat]:
self._model.update_weight(feat.key, guess, feat.value * costs[guess])
self._model.update_weight(feat.key, best, -feat.value * costs[guess])
loss += costs[guess]
action = self.moves.c[guess]
action.do(stcls.c, action.label)
return loss
def add_label(self, label):
for action in self.moves.action_types:
added = self.moves.add_action(action, label)
if added:
# Important that the labels be stored as a list! We need the
# order, or the model goes out of synch
self.cfg.setdefault('extra_labels', []).append(label)
def set_annotations(self, docs, states, tensors=None):
cdef StateClass state
cdef Doc doc
for i, (state, doc) in enumerate(zip(states, docs)):
self.moves.finalize_state(state.c)
for j in range(doc.length):
doc.c[j] = state.c._sent[j]
if tensors is not None:
if isinstance(doc.tensor, numpy.ndarray) \
and not isinstance(tensors[i], numpy.ndarray):
doc.extend_tensor(tensors[i].get())
else:
doc.extend_tensor(tensors[i])
self.moves.finalize_doc(doc)
for hook in self.postprocesses:
for doc in docs:
hook(doc)
@property
def move_names(self):
names = []
for i in range(self.moves.n_moves):
name = self.moves.move_name(self.moves.c[i].move, self.moves.c[i].label)
names.append(name)
return names
@property
def postprocesses(self):
# Available for subclasses, e.g. to deprojectivize
return []
def begin_training(self, gold_tuples, pipeline=None, sgd=None, **cfg):
if 'model' in cfg:
self.model = cfg['model']
gold_tuples = nonproj.preprocess_training_data(gold_tuples,
label_freq_cutoff=100)
actions = self.moves.get_actions(gold_parses=gold_tuples)
for action, labels in actions.items():
for label in labels:
self.moves.add_action(action, label)
if self.model is True:
cfg['pretrained_dims'] = self.vocab.vectors_length
self.model, cfg = self.Model(self.moves.n_moves, **cfg)
self._model = self.model
if sgd is None:
sgd = self.create_optimizer()
self.init_multitask_objectives(gold_tuples, pipeline, sgd=sgd, **cfg)
link_vectors_to_models(self.vocab)
self.cfg.update(cfg)
elif sgd is None:
sgd = self.create_optimizer()
return sgd
def init_multitask_objectives(self, gold_tuples, pipeline, **cfg):
'''Setup models for secondary objectives, to benefit from multi-task
learning. This method is intended to be overridden by subclasses.
For instance, the dependency parser can benefit from sharing
an input representation with a label prediction model. These auxiliary
models are discarded after training.
'''
pass
def preprocess_gold(self, docs_golds):
for doc, gold in docs_golds:
yield doc, gold
def use_params(self, params):
pass
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
if prob <= 0 or prob >= 1.:
return 0
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
cdef double* probs = &py_probs[0]
for i in range(nr_feat):
if probs[i] >= prob:
feats[i].value /= prob
else:
feats[i].value = 0.
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly GoldParse gold
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
self.parser = parser
self.doc = doc
if gold is not None:
self.gold = gold
self.parser.moves.preprocess_gold(self.gold)
else:
self.gold = GoldParse(doc)
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
@property
def costs(self):
"""
Find the action-costs for the current state.
"""
if not self.gold:
raise ValueError("Can't set costs: No GoldParse provided")
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
self.stcls, self.gold)
costs = {}
for i in range(self.parser.moves.n_moves):
if not self.eg.c.is_valid[i]:
continue
transition = self.parser.moves.c[i]
name = self.parser.moves.move_name(transition.move, transition.label)
costs[name] = self.eg.c.costs[i]
return costs
def predict(self):
self.eg.reset()
self.eg.c.nr_feat = self.parser._model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
self.parser._model.set_scoresC(self.eg.c.scores,
self.eg.c.features, self.eg.c.nr_feat)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name=None):
if action_name is None:
action_name = self.predict()
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
class ParserStateError(ValueError):
def __init__(self, doc):
ValueError.__init__(self,
"Error analysing doc -- no valid actions available. This should "
"never happen, so please report the error on the issue tracker. "
"Here's the thread to do so --- reopen it if it's closed:\n"
"https://github.com/spacy-io/spaCy/issues/429\n"
"Please include the text that the parser failed on, which is:\n"
"%s" % repr(doc.text))
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
cdef int best = -1
for i in range(n):
if costs[i] <= 0:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
mode = i
score = scores[i]
return mode
def _cleanup(Beam beam):
cdef StateC* state
# Once parsing has finished, states in beam may not be unique. Is this
# correct?
seen = set()
for i in range(beam.width):
addr = <size_t>beam._parents[i].content
if addr not in seen:
state = <StateC*>addr
del state
seen.add(addr)
else:
print(i, addr)
print(seen)
raise Exception
addr = <size_t>beam._states[i].content
if addr not in seen:
state = <StateC*>addr
del state
seen.add(addr)
else:
print(i, addr)
print(seen)
raise Exception