spaCy/spacy/lang/fa/lex_attrs.py
Ines Montani eddeb36c96
💫 Tidy up and auto-format .py files (#2983)
<!--- Provide a general summary of your changes in the title. -->

## Description
- [x] Use [`black`](https://github.com/ambv/black) to auto-format all `.py` files.
- [x] Update flake8 config to exclude very large files (lemmatization tables etc.)
- [x] Update code to be compatible with flake8 rules
- [x] Fix various small bugs, inconsistencies and messy stuff in the language data
- [x] Update docs to explain new code style (`black`, `flake8`, when to use `# fmt: off` and `# fmt: on` and what `# noqa` means)

Once #2932 is merged, which auto-formats and tidies up the CLI, we'll be able to run `flake8 spacy` actually get meaningful results.

At the moment, the code style and linting isn't applied automatically, but I'm hoping that the new [GitHub Actions](https://github.com/features/actions) will let us auto-format pull requests and post comments with relevant linting information.

### Types of change
enhancement, code style

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-11-30 17:03:03 +01:00

105 lines
1.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding: utf8
from __future__ import unicode_literals
from ...attrs import LIKE_NUM
MIM = "م"
ZWNJ_O_MIM = "‌ام"
YE_NUN = "ین"
_num_words = set(
"""
صفر
یک
دو
سه
چهار
پنج
شش
شیش
هفت
هشت
نه
ده
یازده
دوازده
سیزده
چهارده
پانزده
پونزده
شانزده
شونزده
هفده
هجده
هیجده
نوزده
بیست
سی
چهل
پنجاه
شصت
هفتاد
هشتاد
نود
صد
یکصد
یک‌صد
دویست
سیصد
چهارصد
پانصد
پونصد
ششصد
شیشصد
هفتصد
هفصد
هشتصد
نهصد
هزار
میلیون
میلیارد
بیلیون
بیلیارد
تریلیون
تریلیارد
کوادریلیون
کادریلیارد
کوینتیلیون
""".split()
)
_ordinal_words = set(
"""
اول
سوم
سی‌ام""".split()
)
_ordinal_words.update({num + MIM for num in _num_words})
_ordinal_words.update({num + ZWNJ_O_MIM for num in _num_words})
_ordinal_words.update({num + YE_NUN for num in _ordinal_words})
def like_num(text):
"""
check if text resembles a number
"""
text = (
text.replace(",", "")
.replace(".", "")
.replace("،", "")
.replace("٫", "")
.replace("/", "")
)
if text.isdigit():
return True
if text in _num_words:
return True
if text in _ordinal_words:
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}