spaCy/spacy/pipeline/dep_parser.pyx
2025-05-21 23:19:00 +02:00

179 lines
5.6 KiB
Cython

# cython: infer_types=True, binding=True
import importlib
import sys
from collections import defaultdict
from typing import Callable, Optional
from thinc.api import Config, Model
from ._parser_internals.transition_system import TransitionSystem
from ._parser_internals.arc_eager cimport ArcEager
from .transition_parser cimport Parser
from ..language import Language
from ..scorer import Scorer
from ..training import remove_bilu_prefix
from ..util import registry
from ._parser_internals import nonproj
from ._parser_internals.nonproj import DELIMITER
from .functions import merge_subtokens
default_model_config = """
[model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = true
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2"
pretrained_vectors = null
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
"""
DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
def parser_score(examples, **kwargs):
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans
and Scorer.score_deps.
DOCS: https://spacy.io/api/dependencyparser#score
"""
def has_sents(doc):
return doc.has_annotation("SENT_START")
def dep_getter(token, attr):
dep = getattr(token, attr)
dep = token.vocab.strings.as_string(dep).lower()
return dep
results = {}
results.update(Scorer.score_spans(examples, "sents", has_annotation=has_sents, **kwargs))
kwargs.setdefault("getter", dep_getter)
kwargs.setdefault("ignore_labels", ("p", "punct"))
results.update(Scorer.score_deps(examples, "dep", **kwargs))
del results["sents_per_type"]
return results
def make_parser_scorer():
return parser_score
cdef class DependencyParser(Parser):
"""Pipeline component for dependency parsing.
DOCS: https://spacy.io/api/dependencyparser
"""
TransitionSystem = ArcEager
def __init__(
self,
vocab,
model,
name="parser",
moves=None,
*,
update_with_oracle_cut_size=100,
min_action_freq=30,
learn_tokens=False,
beam_width=1,
beam_density=0.0,
beam_update_prob=0.0,
multitasks=tuple(),
incorrect_spans_key=None,
scorer=parser_score,
):
"""Create a DependencyParser.
"""
super().__init__(
vocab,
model,
name,
moves,
update_with_oracle_cut_size=update_with_oracle_cut_size,
min_action_freq=min_action_freq,
learn_tokens=learn_tokens,
beam_width=beam_width,
beam_density=beam_density,
beam_update_prob=beam_update_prob,
multitasks=multitasks,
incorrect_spans_key=incorrect_spans_key,
scorer=scorer,
)
@property
def postprocesses(self):
output = [nonproj.deprojectivize]
if self.cfg.get("learn_tokens") is True:
output.append(merge_subtokens)
return tuple(output)
def add_multitask_objective(self, mt_component):
self._multitasks.append(mt_component)
def init_multitask_objectives(self, get_examples, nlp=None, **cfg):
# TODO: transfer self.model.get_ref("tok2vec") to the multitask's model ?
for labeller in self._multitasks:
labeller.model.set_dim("nO", len(self.labels))
if labeller.model.has_ref("output_layer"):
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
labeller.initialize(get_examples, nlp=nlp)
@property
def labels(self):
labels = set()
# Get the labels from the model by looking at the available moves
for move in self.move_names:
if "-" in move:
label = remove_bilu_prefix(move)
if DELIMITER in label:
label = label.split(DELIMITER)[1]
labels.add(label)
return tuple(sorted(labels))
def scored_parses(self, beams):
"""Return two dictionaries with scores for each beam/doc that was processed:
one containing (i, head) keys, and another containing (i, label) keys.
"""
head_scores = []
label_scores = []
for beam in beams:
score_head_dict = defaultdict(float)
score_label_dict = defaultdict(float)
for score, parses in self.moves.get_beam_parses(beam):
for head, i, label in parses:
score_head_dict[(i, head)] += score
score_label_dict[(i, label)] += score
head_scores.append(score_head_dict)
label_scores.append(score_label_dict)
return head_scores, label_scores
def _ensure_labels_are_added(self, docs):
# This gives the parser a chance to add labels it's missing for a batch
# of documents. However, this isn't desirable for the dependency parser,
# because we instead have a label frequency cut-off and back off rare
# labels to 'dep'.
pass
# Setup backwards compatibility hook for factories
def __getattr__(name):
if name == "make_parser":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_parser
elif name == "make_beam_parser":
module = importlib.import_module("spacy.pipeline.factories")
return module.make_beam_parser
raise AttributeError(f"module {__name__} has no attribute {name}")