spaCy/spacy/cli/init_pipeline.py
Peter Baumgartner a0a195688f
Tests for CLI app - init config generates train-able config (#12173)
* remove migration support form

* initial test commit

* add fixture

* add combo test

* pull out parameter example data

* fix formatting on examples

* remove unused import

* remove unncessary fmt:off instructions

* only set logger level if verbose flag is explicitly set

---------

Co-authored-by: svlandeg <svlandeg@github.com>
2023-07-31 14:45:04 +02:00

143 lines
5.6 KiB
Python

import logging
from pathlib import Path
from typing import Optional
import srsly
import typer
from wasabi import msg
from .. import util
from ..language import Language
from ..training.initialize import convert_vectors, init_nlp
from ._util import (
Arg,
Opt,
import_code,
init_cli,
parse_config_overrides,
setup_gpu,
show_validation_error,
)
@init_cli.command("vectors")
def init_vectors_cli(
# fmt: off
lang: str = Arg(..., help="The language of the nlp object to create"),
vectors_loc: Path = Arg(..., help="Vectors file in Word2Vec format", exists=True),
output_dir: Path = Arg(..., help="Pipeline output directory"),
prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"),
truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
mode: str = Opt("default", "--mode", "-m", help="Vectors mode: default or floret"),
name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
jsonl_loc: Optional[Path] = Opt(None, "--lexemes-jsonl", "-j", help="Location of JSONL-formatted attributes file", hidden=True),
attr: str = Opt("ORTH", "--attr", "-a", help="Optional token attribute to use for vectors, e.g. LOWER or NORM"),
# fmt: on
):
"""Convert word vectors for use with spaCy. Will export an nlp object that
you can use in the [initialize] block of your config to initialize
a model with vectors.
"""
if verbose:
util.logger.setLevel(logging.DEBUG)
msg.info(f"Creating blank nlp object for language '{lang}'")
nlp = util.get_lang_class(lang)()
if jsonl_loc is not None:
update_lexemes(nlp, jsonl_loc)
convert_vectors(
nlp,
vectors_loc,
truncate=truncate,
prune=prune,
name=name,
mode=mode,
attr=attr,
)
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
nlp.to_disk(output_dir)
msg.good(
"Saved nlp object with vectors to output directory. You can now use the "
"path to it in your config as the 'vectors' setting in [initialize].",
output_dir.resolve(),
)
def update_lexemes(nlp: Language, jsonl_loc: Path) -> None:
# Mostly used for backwards-compatibility and may be removed in the future
lex_attrs = srsly.read_jsonl(jsonl_loc)
for attrs in lex_attrs:
if "settings" in attrs:
continue
lexeme = nlp.vocab[attrs["orth"]]
lexeme.set_attrs(**attrs)
@init_cli.command(
"nlp",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
hidden=True,
)
def init_pipeline_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
output_path: Path = Arg(..., help="Output directory for the prepared data"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
if verbose:
util.logger.setLevel(logging.DEBUG)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides)
with show_validation_error(hint_fill=False):
nlp = init_nlp(config, use_gpu=use_gpu)
nlp.to_disk(output_path)
msg.good(f"Saved initialized pipeline to {output_path}")
@init_cli.command(
"labels",
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
)
def init_labels_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
output_path: Path = Arg(..., help="Output directory for the labels"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
# fmt: on
):
"""Generate JSON files for the labels in the data. This helps speed up the
training process, since spaCy won't have to preprocess the data to
extract the labels."""
if verbose:
util.logger.setLevel(logging.DEBUG)
if not output_path.exists():
output_path.mkdir(parents=True)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
setup_gpu(use_gpu)
with show_validation_error(config_path):
config = util.load_config(config_path, overrides=overrides)
with show_validation_error(hint_fill=False):
nlp = init_nlp(config, use_gpu=use_gpu)
_init_labels(nlp, output_path)
def _init_labels(nlp, output_path):
for name, component in nlp.pipeline:
if getattr(component, "label_data", None) is not None:
output_file = output_path / f"{name}.json"
srsly.write_json(output_file, component.label_data)
msg.good(f"Saving label data for component '{name}' to {output_file}")
else:
msg.info(f"No label data found for component '{name}'")