spaCy/spacy/registrations.py

507 lines
19 KiB
Python

"""Centralized registry population for spaCy components.
This module centralizes registry decorations to prevent circular import issues
with Cython annotation changes from __future__ import annotations. Functions
remain in their original locations, but decoration is moved here.
"""
from typing import Dict, Any, Callable, Iterable, List, Optional, Union
# Global flag to track if registry has been populated
REGISTRY_POPULATED = False
# Global flag to track if factories have been registered
FACTORIES_REGISTERED = False
def populate_registry() -> None:
"""Populate the registry with all necessary components.
This function should be called before accessing the registry, to ensure
it's populated. The function uses a global flag to prevent repopulation.
"""
global REGISTRY_POPULATED
if REGISTRY_POPULATED:
return
# Import all necessary modules
from .util import registry, make_first_longest_spans_filter
# Import all pipeline components that were using registry decorators
from .pipeline.tagger import make_tagger_scorer
from .pipeline.ner import make_ner_scorer
from .pipeline.lemmatizer import make_lemmatizer_scorer
from .pipeline.span_finder import make_span_finder_scorer
from .pipeline.spancat import make_spancat_scorer, build_ngram_suggester, build_ngram_range_suggester, build_preset_spans_suggester
from .pipeline.entityruler import make_entity_ruler_scorer as make_entityruler_scorer
from .pipeline.sentencizer import senter_score as make_sentencizer_scorer
from .pipeline.senter import make_senter_scorer
from .pipeline.textcat import make_textcat_scorer
from .pipeline.textcat_multilabel import make_textcat_multilabel_scorer
# Register miscellaneous components
registry.misc("spacy.first_longest_spans_filter.v1")(make_first_longest_spans_filter)
registry.misc("spacy.ngram_suggester.v1")(build_ngram_suggester)
registry.misc("spacy.ngram_range_suggester.v1")(build_ngram_range_suggester)
registry.misc("spacy.preset_spans_suggester.v1")(build_preset_spans_suggester)
# Need to get references to the existing functions in registry by importing the function that is there
# For the registry that was previously decorated
# Import ML components that use registry
from .ml.models.tok2vec import tok2vec_listener_v1, build_hash_embed_cnn_tok2vec, build_Tok2Vec_model, MultiHashEmbed, CharacterEmbed, MaxoutWindowEncoder, MishWindowEncoder, BiLSTMEncoder
# Register scorers
registry.scorers("spacy.tagger_scorer.v1")(make_tagger_scorer)
registry.scorers("spacy.ner_scorer.v1")(make_ner_scorer)
# span_ruler_scorer removed as it's not in span_ruler.py
registry.scorers("spacy.entity_ruler_scorer.v1")(make_entityruler_scorer)
registry.scorers("spacy.sentencizer_scorer.v1")(make_sentencizer_scorer)
registry.scorers("spacy.senter_scorer.v1")(make_senter_scorer)
registry.scorers("spacy.textcat_scorer.v1")(make_textcat_scorer)
registry.scorers("spacy.textcat_scorer.v2")(make_textcat_scorer)
registry.scorers("spacy.textcat_multilabel_scorer.v1")(make_textcat_multilabel_scorer)
registry.scorers("spacy.textcat_multilabel_scorer.v2")(make_textcat_multilabel_scorer)
registry.scorers("spacy.lemmatizer_scorer.v1")(make_lemmatizer_scorer)
registry.scorers("spacy.span_finder_scorer.v1")(make_span_finder_scorer)
registry.scorers("spacy.spancat_scorer.v1")(make_spancat_scorer)
# Register tok2vec architectures we've modified
registry.architectures("spacy.Tok2VecListener.v1")(tok2vec_listener_v1)
registry.architectures("spacy.HashEmbedCNN.v2")(build_hash_embed_cnn_tok2vec)
registry.architectures("spacy.Tok2Vec.v2")(build_Tok2Vec_model)
registry.architectures("spacy.MultiHashEmbed.v2")(MultiHashEmbed)
registry.architectures("spacy.CharacterEmbed.v2")(CharacterEmbed)
registry.architectures("spacy.MaxoutWindowEncoder.v2")(MaxoutWindowEncoder)
registry.architectures("spacy.MishWindowEncoder.v2")(MishWindowEncoder)
registry.architectures("spacy.TorchBiLSTMEncoder.v1")(BiLSTMEncoder)
# Register factory components
register_factories()
# Set the flag to indicate that the registry has been populated
REGISTRY_POPULATED = True
def register_factories() -> None:
"""Register all factories with the registry.
This function registers all pipeline component factories, centralizing
the registrations that were previously done with @Language.factory decorators.
"""
global FACTORIES_REGISTERED
if FACTORIES_REGISTERED:
return
from .language import Language
# Import factory default configurations
from .pipeline.entity_linker import DEFAULT_NEL_MODEL
from .pipeline.entityruler import DEFAULT_ENT_ID_SEP
from .pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from .pipeline.senter import DEFAULT_SENTER_MODEL
from .pipeline.morphologizer import DEFAULT_MORPH_MODEL
from .pipeline.spancat import DEFAULT_SPANCAT_MODEL, DEFAULT_SPANCAT_SINGLELABEL_MODEL, DEFAULT_SPANS_KEY
from .pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
from .pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
from .pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
from .pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
from .pipeline.ner import DEFAULT_NER_MODEL
from .pipeline.dep_parser import DEFAULT_PARSER_MODEL
from .pipeline.tagger import DEFAULT_TAGGER_MODEL
from .pipeline.multitask import DEFAULT_MT_MODEL
# Import all factory functions
from .pipeline.attributeruler import make_attribute_ruler
from .pipeline.entity_linker import make_entity_linker
from .pipeline.entityruler import make_entity_ruler
from .pipeline.lemmatizer import make_lemmatizer
from .pipeline.textcat import make_textcat, DEFAULT_SINGLE_TEXTCAT_MODEL
from .pipeline.functions import make_token_splitter, make_doc_cleaner
from .pipeline.tok2vec import make_tok2vec
from .pipeline.senter import make_senter
from .pipeline.morphologizer import make_morphologizer
from .pipeline.spancat import make_spancat, make_spancat_singlelabel
from .pipeline.span_ruler import make_entity_ruler as make_span_entity_ruler, make_span_ruler
from .pipeline.edit_tree_lemmatizer import make_edit_tree_lemmatizer
from .pipeline.textcat_multilabel import make_multilabel_textcat
from .pipeline.span_finder import make_span_finder
from .pipeline.ner import make_ner, make_beam_ner
from .pipeline.dep_parser import make_parser, make_beam_parser
from .pipeline.tagger import make_tagger
from .pipeline.multitask import make_nn_labeller
from .pipeline.sentencizer import make_sentencizer
# Register factories using the same pattern as Language.factory decorator
# We use Language.factory()() pattern which exactly mimics the decorator
# attributeruler
Language.factory(
"attribute_ruler",
default_config={
"validate": False,
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
},
)(make_attribute_ruler)
# entity_linker
Language.factory(
"entity_linker",
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"model": DEFAULT_NEL_MODEL,
"labels_discard": [],
"n_sents": 0,
"incl_prior": True,
"incl_context": True,
"entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
"overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True,
"candidates_batch_size": 1,
"threshold": None,
},
default_score_weights={
"nel_micro_f": 1.0,
"nel_micro_r": None,
"nel_micro_p": None,
},
)(make_entity_linker)
# entity_ruler
Language.factory(
"entity_ruler",
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_entity_ruler)
# lemmatizer
Language.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "lookup",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)(make_lemmatizer)
# textcat
Language.factory(
"textcat",
assigns=["doc.cats"],
default_config={
"threshold": 0.0,
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)(make_textcat)
# token_splitter
Language.factory(
"token_splitter",
default_config={"min_length": 25, "split_length": 10},
retokenizes=True,
)(make_token_splitter)
# doc_cleaner
Language.factory(
"doc_cleaner",
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
)(make_doc_cleaner)
# tok2vec
Language.factory(
"tok2vec",
assigns=["doc.tensor"],
default_config={"model": DEFAULT_TOK2VEC_MODEL}
)(make_tok2vec)
# senter
Language.factory(
"senter",
assigns=["token.is_sent_start"],
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)(make_senter)
# morphologizer
Language.factory(
"morphologizer",
assigns=["token.morph", "token.pos"],
default_config={
"model": DEFAULT_MORPH_MODEL,
"overwrite": True,
"extend": False,
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
"label_smoothing": 0.0
},
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
)(make_morphologizer)
# spancat
Language.factory(
"spancat",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"spans_key": DEFAULT_SPANS_KEY,
"max_positive": None,
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)(make_spancat)
# spancat_singlelabel
Language.factory(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
"allow_overlap": True,
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)(make_spancat_singlelabel)
# future_entity_ruler
Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_span_entity_ruler)
# span_ruler
Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
},
)(make_span_ruler)
# trainable_lemmatizer
Language.factory(
"trainable_lemmatizer",
assigns=["token.lemma"],
requires=[],
default_config={
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
"backoff": "orth",
"min_tree_freq": 3,
"overwrite": False,
"top_k": 1,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)(make_edit_tree_lemmatizer)
# textcat_multilabel
Language.factory(
"textcat_multilabel",
assigns=["doc.cats"],
default_config={
"threshold": 0.5,
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)(make_multilabel_textcat)
# span_finder
Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"spans_key": DEFAULT_SPANS_KEY,
"max_length": 25,
"min_length": None,
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
},
)(make_span_finder)
# ner
Language.factory(
"ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)(make_ner)
# beam_ner
Language.factory(
"beam_ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"beam_width": 32,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)(make_beam_ner)
# parser
Language.factory(
"parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)(make_parser)
# beam_parser
Language.factory(
"beam_parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 8,
"beam_density": 0.0001,
"beam_update_prob": 0.5,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)(make_beam_parser)
# tagger
Language.factory(
"tagger",
assigns=["token.tag"],
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
default_score_weights={"tag_acc": 1.0, "pos_acc": 0.0, "tag_micro_p": None, "tag_micro_r": None, "tag_micro_f": None},
)(make_tagger)
# nn_labeller
Language.factory(
"nn_labeller",
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
)(make_nn_labeller)
# sentencizer
Language.factory(
"sentencizer",
assigns=["token.is_sent_start", "doc.sents"],
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)(make_sentencizer)
# Set the flag to indicate that all factories have been registered
FACTORIES_REGISTERED = True