mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-13 09:42:26 +03:00
507 lines
19 KiB
Python
507 lines
19 KiB
Python
"""Centralized registry population for spaCy components.
|
|
|
|
This module centralizes registry decorations to prevent circular import issues
|
|
with Cython annotation changes from __future__ import annotations. Functions
|
|
remain in their original locations, but decoration is moved here.
|
|
"""
|
|
from typing import Dict, Any, Callable, Iterable, List, Optional, Union
|
|
|
|
# Global flag to track if registry has been populated
|
|
REGISTRY_POPULATED = False
|
|
|
|
# Global flag to track if factories have been registered
|
|
FACTORIES_REGISTERED = False
|
|
|
|
def populate_registry() -> None:
|
|
"""Populate the registry with all necessary components.
|
|
|
|
This function should be called before accessing the registry, to ensure
|
|
it's populated. The function uses a global flag to prevent repopulation.
|
|
"""
|
|
global REGISTRY_POPULATED
|
|
if REGISTRY_POPULATED:
|
|
return
|
|
|
|
# Import all necessary modules
|
|
from .util import registry, make_first_longest_spans_filter
|
|
|
|
# Import all pipeline components that were using registry decorators
|
|
from .pipeline.tagger import make_tagger_scorer
|
|
from .pipeline.ner import make_ner_scorer
|
|
from .pipeline.lemmatizer import make_lemmatizer_scorer
|
|
from .pipeline.span_finder import make_span_finder_scorer
|
|
from .pipeline.spancat import make_spancat_scorer, build_ngram_suggester, build_ngram_range_suggester, build_preset_spans_suggester
|
|
from .pipeline.entityruler import make_entity_ruler_scorer as make_entityruler_scorer
|
|
from .pipeline.sentencizer import senter_score as make_sentencizer_scorer
|
|
from .pipeline.senter import make_senter_scorer
|
|
from .pipeline.textcat import make_textcat_scorer
|
|
from .pipeline.textcat_multilabel import make_textcat_multilabel_scorer
|
|
|
|
# Register miscellaneous components
|
|
registry.misc("spacy.first_longest_spans_filter.v1")(make_first_longest_spans_filter)
|
|
registry.misc("spacy.ngram_suggester.v1")(build_ngram_suggester)
|
|
registry.misc("spacy.ngram_range_suggester.v1")(build_ngram_range_suggester)
|
|
registry.misc("spacy.preset_spans_suggester.v1")(build_preset_spans_suggester)
|
|
|
|
# Need to get references to the existing functions in registry by importing the function that is there
|
|
# For the registry that was previously decorated
|
|
|
|
# Import ML components that use registry
|
|
from .ml.models.tok2vec import tok2vec_listener_v1, build_hash_embed_cnn_tok2vec, build_Tok2Vec_model, MultiHashEmbed, CharacterEmbed, MaxoutWindowEncoder, MishWindowEncoder, BiLSTMEncoder
|
|
|
|
# Register scorers
|
|
registry.scorers("spacy.tagger_scorer.v1")(make_tagger_scorer)
|
|
registry.scorers("spacy.ner_scorer.v1")(make_ner_scorer)
|
|
# span_ruler_scorer removed as it's not in span_ruler.py
|
|
registry.scorers("spacy.entity_ruler_scorer.v1")(make_entityruler_scorer)
|
|
registry.scorers("spacy.sentencizer_scorer.v1")(make_sentencizer_scorer)
|
|
registry.scorers("spacy.senter_scorer.v1")(make_senter_scorer)
|
|
registry.scorers("spacy.textcat_scorer.v1")(make_textcat_scorer)
|
|
registry.scorers("spacy.textcat_scorer.v2")(make_textcat_scorer)
|
|
registry.scorers("spacy.textcat_multilabel_scorer.v1")(make_textcat_multilabel_scorer)
|
|
registry.scorers("spacy.textcat_multilabel_scorer.v2")(make_textcat_multilabel_scorer)
|
|
registry.scorers("spacy.lemmatizer_scorer.v1")(make_lemmatizer_scorer)
|
|
registry.scorers("spacy.span_finder_scorer.v1")(make_span_finder_scorer)
|
|
registry.scorers("spacy.spancat_scorer.v1")(make_spancat_scorer)
|
|
|
|
# Register tok2vec architectures we've modified
|
|
registry.architectures("spacy.Tok2VecListener.v1")(tok2vec_listener_v1)
|
|
registry.architectures("spacy.HashEmbedCNN.v2")(build_hash_embed_cnn_tok2vec)
|
|
registry.architectures("spacy.Tok2Vec.v2")(build_Tok2Vec_model)
|
|
registry.architectures("spacy.MultiHashEmbed.v2")(MultiHashEmbed)
|
|
registry.architectures("spacy.CharacterEmbed.v2")(CharacterEmbed)
|
|
registry.architectures("spacy.MaxoutWindowEncoder.v2")(MaxoutWindowEncoder)
|
|
registry.architectures("spacy.MishWindowEncoder.v2")(MishWindowEncoder)
|
|
registry.architectures("spacy.TorchBiLSTMEncoder.v1")(BiLSTMEncoder)
|
|
|
|
# Register factory components
|
|
register_factories()
|
|
|
|
# Set the flag to indicate that the registry has been populated
|
|
REGISTRY_POPULATED = True
|
|
|
|
|
|
def register_factories() -> None:
|
|
"""Register all factories with the registry.
|
|
|
|
This function registers all pipeline component factories, centralizing
|
|
the registrations that were previously done with @Language.factory decorators.
|
|
"""
|
|
global FACTORIES_REGISTERED
|
|
if FACTORIES_REGISTERED:
|
|
return
|
|
|
|
from .language import Language
|
|
|
|
# Import factory default configurations
|
|
from .pipeline.entity_linker import DEFAULT_NEL_MODEL
|
|
from .pipeline.entityruler import DEFAULT_ENT_ID_SEP
|
|
from .pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
|
from .pipeline.senter import DEFAULT_SENTER_MODEL
|
|
from .pipeline.morphologizer import DEFAULT_MORPH_MODEL
|
|
from .pipeline.spancat import DEFAULT_SPANCAT_MODEL, DEFAULT_SPANCAT_SINGLELABEL_MODEL, DEFAULT_SPANS_KEY
|
|
from .pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
|
|
from .pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
|
|
from .pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
|
from .pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
|
|
from .pipeline.ner import DEFAULT_NER_MODEL
|
|
from .pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
|
from .pipeline.tagger import DEFAULT_TAGGER_MODEL
|
|
from .pipeline.multitask import DEFAULT_MT_MODEL
|
|
|
|
# Import all factory functions
|
|
from .pipeline.attributeruler import make_attribute_ruler
|
|
from .pipeline.entity_linker import make_entity_linker
|
|
from .pipeline.entityruler import make_entity_ruler
|
|
from .pipeline.lemmatizer import make_lemmatizer
|
|
from .pipeline.textcat import make_textcat, DEFAULT_SINGLE_TEXTCAT_MODEL
|
|
from .pipeline.functions import make_token_splitter, make_doc_cleaner
|
|
from .pipeline.tok2vec import make_tok2vec
|
|
from .pipeline.senter import make_senter
|
|
from .pipeline.morphologizer import make_morphologizer
|
|
from .pipeline.spancat import make_spancat, make_spancat_singlelabel
|
|
from .pipeline.span_ruler import make_entity_ruler as make_span_entity_ruler, make_span_ruler
|
|
from .pipeline.edit_tree_lemmatizer import make_edit_tree_lemmatizer
|
|
from .pipeline.textcat_multilabel import make_multilabel_textcat
|
|
from .pipeline.span_finder import make_span_finder
|
|
from .pipeline.ner import make_ner, make_beam_ner
|
|
from .pipeline.dep_parser import make_parser, make_beam_parser
|
|
from .pipeline.tagger import make_tagger
|
|
from .pipeline.multitask import make_nn_labeller
|
|
from .pipeline.sentencizer import make_sentencizer
|
|
|
|
# Register factories using the same pattern as Language.factory decorator
|
|
# We use Language.factory()() pattern which exactly mimics the decorator
|
|
|
|
# attributeruler
|
|
Language.factory(
|
|
"attribute_ruler",
|
|
default_config={
|
|
"validate": False,
|
|
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
|
|
},
|
|
)(make_attribute_ruler)
|
|
|
|
# entity_linker
|
|
Language.factory(
|
|
"entity_linker",
|
|
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
|
|
assigns=["token.ent_kb_id"],
|
|
default_config={
|
|
"model": DEFAULT_NEL_MODEL,
|
|
"labels_discard": [],
|
|
"n_sents": 0,
|
|
"incl_prior": True,
|
|
"incl_context": True,
|
|
"entity_vector_length": 64,
|
|
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
|
|
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
|
|
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
|
|
"overwrite": True,
|
|
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
|
|
"use_gold_ents": True,
|
|
"candidates_batch_size": 1,
|
|
"threshold": None,
|
|
},
|
|
default_score_weights={
|
|
"nel_micro_f": 1.0,
|
|
"nel_micro_r": None,
|
|
"nel_micro_p": None,
|
|
},
|
|
)(make_entity_linker)
|
|
|
|
# entity_ruler
|
|
Language.factory(
|
|
"entity_ruler",
|
|
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
|
|
default_config={
|
|
"phrase_matcher_attr": None,
|
|
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
|
"validate": False,
|
|
"overwrite_ents": False,
|
|
"ent_id_sep": DEFAULT_ENT_ID_SEP,
|
|
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
|
},
|
|
default_score_weights={
|
|
"ents_f": 1.0,
|
|
"ents_p": 0.0,
|
|
"ents_r": 0.0,
|
|
"ents_per_type": None,
|
|
},
|
|
)(make_entity_ruler)
|
|
|
|
# lemmatizer
|
|
Language.factory(
|
|
"lemmatizer",
|
|
assigns=["token.lemma"],
|
|
default_config={
|
|
"model": None,
|
|
"mode": "lookup",
|
|
"overwrite": False,
|
|
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
|
},
|
|
default_score_weights={"lemma_acc": 1.0},
|
|
)(make_lemmatizer)
|
|
|
|
# textcat
|
|
Language.factory(
|
|
"textcat",
|
|
assigns=["doc.cats"],
|
|
default_config={
|
|
"threshold": 0.0,
|
|
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
|
|
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
|
|
},
|
|
default_score_weights={
|
|
"cats_score": 1.0,
|
|
"cats_score_desc": None,
|
|
"cats_micro_p": None,
|
|
"cats_micro_r": None,
|
|
"cats_micro_f": None,
|
|
"cats_macro_p": None,
|
|
"cats_macro_r": None,
|
|
"cats_macro_f": None,
|
|
"cats_macro_auc": None,
|
|
"cats_f_per_type": None,
|
|
},
|
|
)(make_textcat)
|
|
|
|
# token_splitter
|
|
Language.factory(
|
|
"token_splitter",
|
|
default_config={"min_length": 25, "split_length": 10},
|
|
retokenizes=True,
|
|
)(make_token_splitter)
|
|
|
|
# doc_cleaner
|
|
Language.factory(
|
|
"doc_cleaner",
|
|
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
|
|
)(make_doc_cleaner)
|
|
|
|
# tok2vec
|
|
Language.factory(
|
|
"tok2vec",
|
|
assigns=["doc.tensor"],
|
|
default_config={"model": DEFAULT_TOK2VEC_MODEL}
|
|
)(make_tok2vec)
|
|
|
|
# senter
|
|
Language.factory(
|
|
"senter",
|
|
assigns=["token.is_sent_start"],
|
|
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
)(make_senter)
|
|
|
|
# morphologizer
|
|
Language.factory(
|
|
"morphologizer",
|
|
assigns=["token.morph", "token.pos"],
|
|
default_config={
|
|
"model": DEFAULT_MORPH_MODEL,
|
|
"overwrite": True,
|
|
"extend": False,
|
|
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
|
|
"label_smoothing": 0.0
|
|
},
|
|
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
|
|
)(make_morphologizer)
|
|
|
|
# spancat
|
|
Language.factory(
|
|
"spancat",
|
|
assigns=["doc.spans"],
|
|
default_config={
|
|
"threshold": 0.5,
|
|
"spans_key": DEFAULT_SPANS_KEY,
|
|
"max_positive": None,
|
|
"model": DEFAULT_SPANCAT_MODEL,
|
|
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
|
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
|
},
|
|
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
|
)(make_spancat)
|
|
|
|
# spancat_singlelabel
|
|
Language.factory(
|
|
"spancat_singlelabel",
|
|
assigns=["doc.spans"],
|
|
default_config={
|
|
"spans_key": DEFAULT_SPANS_KEY,
|
|
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
|
|
"negative_weight": 1.0,
|
|
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
|
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
|
"allow_overlap": True,
|
|
},
|
|
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
|
)(make_spancat_singlelabel)
|
|
|
|
# future_entity_ruler
|
|
Language.factory(
|
|
"future_entity_ruler",
|
|
assigns=["doc.ents"],
|
|
default_config={
|
|
"phrase_matcher_attr": None,
|
|
"validate": False,
|
|
"overwrite_ents": False,
|
|
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
|
|
"ent_id_sep": "__unused__",
|
|
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
|
},
|
|
default_score_weights={
|
|
"ents_f": 1.0,
|
|
"ents_p": 0.0,
|
|
"ents_r": 0.0,
|
|
"ents_per_type": None,
|
|
},
|
|
)(make_span_entity_ruler)
|
|
|
|
# span_ruler
|
|
Language.factory(
|
|
"span_ruler",
|
|
assigns=["doc.spans"],
|
|
default_config={
|
|
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
|
"spans_filter": None,
|
|
"annotate_ents": False,
|
|
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
|
|
"phrase_matcher_attr": None,
|
|
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
|
|
"validate": False,
|
|
"overwrite": True,
|
|
"scorer": {
|
|
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
|
|
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
|
|
},
|
|
},
|
|
default_score_weights={
|
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
|
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
|
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
|
|
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
|
|
},
|
|
)(make_span_ruler)
|
|
|
|
# trainable_lemmatizer
|
|
Language.factory(
|
|
"trainable_lemmatizer",
|
|
assigns=["token.lemma"],
|
|
requires=[],
|
|
default_config={
|
|
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
|
|
"backoff": "orth",
|
|
"min_tree_freq": 3,
|
|
"overwrite": False,
|
|
"top_k": 1,
|
|
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
|
|
},
|
|
default_score_weights={"lemma_acc": 1.0},
|
|
)(make_edit_tree_lemmatizer)
|
|
|
|
# textcat_multilabel
|
|
Language.factory(
|
|
"textcat_multilabel",
|
|
assigns=["doc.cats"],
|
|
default_config={
|
|
"threshold": 0.5,
|
|
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
|
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
|
|
},
|
|
default_score_weights={
|
|
"cats_score": 1.0,
|
|
"cats_score_desc": None,
|
|
"cats_micro_p": None,
|
|
"cats_micro_r": None,
|
|
"cats_micro_f": None,
|
|
"cats_macro_p": None,
|
|
"cats_macro_r": None,
|
|
"cats_macro_f": None,
|
|
"cats_macro_auc": None,
|
|
"cats_f_per_type": None,
|
|
},
|
|
)(make_multilabel_textcat)
|
|
|
|
# span_finder
|
|
Language.factory(
|
|
"span_finder",
|
|
assigns=["doc.spans"],
|
|
default_config={
|
|
"threshold": 0.5,
|
|
"model": DEFAULT_SPAN_FINDER_MODEL,
|
|
"spans_key": DEFAULT_SPANS_KEY,
|
|
"max_length": 25,
|
|
"min_length": None,
|
|
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
|
|
},
|
|
default_score_weights={
|
|
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
|
|
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
|
|
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
|
|
},
|
|
)(make_span_finder)
|
|
|
|
# ner
|
|
Language.factory(
|
|
"ner",
|
|
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
|
default_config={
|
|
"moves": None,
|
|
"update_with_oracle_cut_size": 100,
|
|
"model": DEFAULT_NER_MODEL,
|
|
"incorrect_spans_key": None,
|
|
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
|
},
|
|
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
|
)(make_ner)
|
|
|
|
# beam_ner
|
|
Language.factory(
|
|
"beam_ner",
|
|
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
|
default_config={
|
|
"moves": None,
|
|
"update_with_oracle_cut_size": 100,
|
|
"model": DEFAULT_NER_MODEL,
|
|
"beam_density": 0.01,
|
|
"beam_update_prob": 0.5,
|
|
"beam_width": 32,
|
|
"incorrect_spans_key": None,
|
|
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
|
|
},
|
|
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
|
)(make_beam_ner)
|
|
|
|
# parser
|
|
Language.factory(
|
|
"parser",
|
|
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
|
default_config={
|
|
"moves": None,
|
|
"update_with_oracle_cut_size": 100,
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"model": DEFAULT_PARSER_MODEL,
|
|
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
|
},
|
|
default_score_weights={
|
|
"dep_uas": 0.5,
|
|
"dep_las": 0.5,
|
|
"dep_las_per_type": None,
|
|
"sents_p": None,
|
|
"sents_r": None,
|
|
"sents_f": 0.0,
|
|
},
|
|
)(make_parser)
|
|
|
|
# beam_parser
|
|
Language.factory(
|
|
"beam_parser",
|
|
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
|
default_config={
|
|
"moves": None,
|
|
"update_with_oracle_cut_size": 100,
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"beam_width": 8,
|
|
"beam_density": 0.0001,
|
|
"beam_update_prob": 0.5,
|
|
"model": DEFAULT_PARSER_MODEL,
|
|
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
|
|
},
|
|
default_score_weights={
|
|
"dep_uas": 0.5,
|
|
"dep_las": 0.5,
|
|
"dep_las_per_type": None,
|
|
"sents_p": None,
|
|
"sents_r": None,
|
|
"sents_f": 0.0,
|
|
},
|
|
)(make_beam_parser)
|
|
|
|
# tagger
|
|
Language.factory(
|
|
"tagger",
|
|
assigns=["token.tag"],
|
|
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
|
|
default_score_weights={"tag_acc": 1.0, "pos_acc": 0.0, "tag_micro_p": None, "tag_micro_r": None, "tag_micro_f": None},
|
|
)(make_tagger)
|
|
|
|
# nn_labeller
|
|
Language.factory(
|
|
"nn_labeller",
|
|
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
|
|
)(make_nn_labeller)
|
|
|
|
# sentencizer
|
|
Language.factory(
|
|
"sentencizer",
|
|
assigns=["token.is_sent_start", "doc.sents"],
|
|
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
|
|
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
|
|
)(make_sentencizer)
|
|
|
|
# Set the flag to indicate that all factories have been registered
|
|
FACTORIES_REGISTERED = True
|