mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
231 lines
7.9 KiB
Python
231 lines
7.9 KiB
Python
# coding: utf-8
|
|
"""Script that takes a previously created Knowledge Base and trains an entity linking
|
|
pipeline. The provided KB directory should hold the kb, the original nlp object and
|
|
its vocab used to create the KB, and a few auxiliary files such as the entity definitions,
|
|
as created by the script `wikidata_create_kb`.
|
|
|
|
For the Wikipedia dump: get enwiki-latest-pages-articles-multistream.xml.bz2
|
|
from https://dumps.wikimedia.org/enwiki/latest/
|
|
"""
|
|
from __future__ import unicode_literals
|
|
|
|
import random
|
|
import logging
|
|
import spacy
|
|
from pathlib import Path
|
|
import plac
|
|
from tqdm import tqdm
|
|
|
|
from bin.wiki_entity_linking import wikipedia_processor
|
|
from bin.wiki_entity_linking import (
|
|
TRAINING_DATA_FILE,
|
|
KB_MODEL_DIR,
|
|
KB_FILE,
|
|
LOG_FORMAT,
|
|
OUTPUT_MODEL_DIR,
|
|
)
|
|
from bin.wiki_entity_linking.entity_linker_evaluation import measure_performance
|
|
from bin.wiki_entity_linking.kb_creator import read_kb
|
|
|
|
from spacy.util import minibatch, compounding
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@plac.annotations(
|
|
dir_kb=("Directory with KB, NLP and related files", "positional", None, Path),
|
|
output_dir=("Output directory", "option", "o", Path),
|
|
loc_training=("Location to training data", "option", "k", Path),
|
|
epochs=("Number of training iterations (default 10)", "option", "e", int),
|
|
dropout=("Dropout to prevent overfitting (default 0.5)", "option", "p", float),
|
|
lr=("Learning rate (default 0.005)", "option", "n", float),
|
|
l2=("L2 regularization", "option", "r", float),
|
|
train_articles=("# training articles (default 90% of all)", "option", "t", int),
|
|
dev_articles=("# dev test articles (default 10% of all)", "option", "d", int),
|
|
labels_discard=("NER labels to discard (default None)", "option", "l", str),
|
|
)
|
|
def main(
|
|
dir_kb,
|
|
output_dir=None,
|
|
loc_training=None,
|
|
epochs=10,
|
|
dropout=0.5,
|
|
lr=0.005,
|
|
l2=1e-6,
|
|
train_articles=None,
|
|
dev_articles=None,
|
|
labels_discard=None,
|
|
):
|
|
if not output_dir:
|
|
logger.warning(
|
|
"No output dir specified so no results will be written, are you sure about this ?"
|
|
)
|
|
|
|
logger.info("Creating Entity Linker with Wikipedia and WikiData")
|
|
|
|
output_dir = Path(output_dir) if output_dir else dir_kb
|
|
training_path = loc_training if loc_training else dir_kb / TRAINING_DATA_FILE
|
|
nlp_dir = dir_kb / KB_MODEL_DIR
|
|
kb_path = dir_kb / KB_FILE
|
|
nlp_output_dir = output_dir / OUTPUT_MODEL_DIR
|
|
|
|
# STEP 0: set up IO
|
|
if not output_dir.exists():
|
|
output_dir.mkdir()
|
|
|
|
# STEP 1 : load the NLP object
|
|
logger.info("STEP 1a: Loading model from {}".format(nlp_dir))
|
|
nlp = spacy.load(nlp_dir)
|
|
logger.info(
|
|
"Original NLP pipeline has following pipeline components: {}".format(
|
|
nlp.pipe_names
|
|
)
|
|
)
|
|
|
|
# check that there is a NER component in the pipeline
|
|
if "ner" not in nlp.pipe_names:
|
|
raise ValueError("The `nlp` object should have a pretrained `ner` component.")
|
|
|
|
logger.info("STEP 1b: Loading KB from {}".format(kb_path))
|
|
kb = read_kb(nlp, kb_path)
|
|
|
|
# STEP 2: read the training dataset previously created from WP
|
|
logger.info("STEP 2: Reading training & dev dataset from {}".format(training_path))
|
|
train_indices, dev_indices = wikipedia_processor.read_training_indices(
|
|
training_path
|
|
)
|
|
logger.info(
|
|
"Training set has {} articles, limit set to roughly {} articles per epoch".format(
|
|
len(train_indices), train_articles if train_articles else "all"
|
|
)
|
|
)
|
|
logger.info(
|
|
"Dev set has {} articles, limit set to rougly {} articles for evaluation".format(
|
|
len(dev_indices), dev_articles if dev_articles else "all"
|
|
)
|
|
)
|
|
if dev_articles:
|
|
dev_indices = dev_indices[0:dev_articles]
|
|
|
|
# STEP 3: create and train an entity linking pipe
|
|
logger.info(
|
|
"STEP 3: Creating and training an Entity Linking pipe for {} epochs".format(
|
|
epochs
|
|
)
|
|
)
|
|
if labels_discard:
|
|
labels_discard = [x.strip() for x in labels_discard.split(",")]
|
|
logger.info(
|
|
"Discarding {} NER types: {}".format(len(labels_discard), labels_discard)
|
|
)
|
|
else:
|
|
labels_discard = []
|
|
|
|
el_pipe = nlp.create_pipe(
|
|
name="entity_linker",
|
|
config={
|
|
"pretrained_vectors": nlp.vocab.vectors,
|
|
"labels_discard": labels_discard,
|
|
},
|
|
)
|
|
el_pipe.set_kb(kb)
|
|
nlp.add_pipe(el_pipe, last=True)
|
|
|
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"]
|
|
with nlp.disable_pipes(*other_pipes): # only train Entity Linking
|
|
optimizer = nlp.begin_training()
|
|
optimizer.learn_rate = lr
|
|
optimizer.L2 = l2
|
|
|
|
logger.info("Dev Baseline Accuracies:")
|
|
dev_data = wikipedia_processor.read_el_docs_golds(
|
|
nlp=nlp,
|
|
entity_file_path=training_path,
|
|
dev=True,
|
|
line_ids=dev_indices,
|
|
kb=kb,
|
|
labels_discard=labels_discard,
|
|
)
|
|
|
|
measure_performance(
|
|
dev_data, kb, el_pipe, baseline=True, context=False, dev_limit=len(dev_indices)
|
|
)
|
|
|
|
for itn in range(epochs):
|
|
random.shuffle(train_indices)
|
|
losses = {}
|
|
batches = minibatch(train_indices, size=compounding(8.0, 128.0, 1.001))
|
|
batchnr = 0
|
|
articles_processed = 0
|
|
|
|
# we either process the whole training file, or just a part each epoch
|
|
bar_total = len(train_indices)
|
|
if train_articles:
|
|
bar_total = train_articles
|
|
|
|
with tqdm(total=bar_total, leave=False, desc=f"Epoch {itn}") as pbar:
|
|
for batch in batches:
|
|
if not train_articles or articles_processed < train_articles:
|
|
with nlp.disable_pipes("entity_linker"):
|
|
train_batch = wikipedia_processor.read_el_docs_golds(
|
|
nlp=nlp,
|
|
entity_file_path=training_path,
|
|
dev=False,
|
|
line_ids=batch,
|
|
kb=kb,
|
|
labels_discard=labels_discard,
|
|
)
|
|
try:
|
|
with nlp.disable_pipes(*other_pipes):
|
|
nlp.update(
|
|
examples=train_batch,
|
|
sgd=optimizer,
|
|
drop=dropout,
|
|
losses=losses,
|
|
)
|
|
batchnr += 1
|
|
articles_processed += len(docs)
|
|
pbar.update(len(docs))
|
|
except Exception as e:
|
|
logger.error("Error updating batch:" + str(e))
|
|
if batchnr > 0:
|
|
logging.info(
|
|
"Epoch {} trained on {} articles, train loss {}".format(
|
|
itn, articles_processed, round(losses["entity_linker"] / batchnr, 2)
|
|
)
|
|
)
|
|
# re-read the dev_data (data is returned as a generator)
|
|
dev_data = wikipedia_processor.read_el_docs_golds(
|
|
nlp=nlp,
|
|
entity_file_path=training_path,
|
|
dev=True,
|
|
line_ids=dev_indices,
|
|
kb=kb,
|
|
labels_discard=labels_discard,
|
|
)
|
|
measure_performance(
|
|
dev_data,
|
|
kb,
|
|
el_pipe,
|
|
baseline=False,
|
|
context=True,
|
|
dev_limit=len(dev_indices),
|
|
)
|
|
|
|
if output_dir:
|
|
# STEP 4: write the NLP pipeline (now including an EL model) to file
|
|
logger.info(
|
|
"Final NLP pipeline has following pipeline components: {}".format(
|
|
nlp.pipe_names
|
|
)
|
|
)
|
|
logger.info("STEP 4: Writing trained NLP to {}".format(nlp_output_dir))
|
|
nlp.to_disk(nlp_output_dir)
|
|
|
|
logger.info("Done!")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.INFO, format=LOG_FORMAT)
|
|
plac.call(main)
|