spaCy/spacy/pipeline/_parser_internals/transition_system.pyx
2023-07-19 17:41:29 +02:00

322 lines
12 KiB
Cython

# cython: infer_types=True
from __future__ import print_function
from cymem.cymem cimport Pool
from libc.stdlib cimport calloc, free
from libcpp.vector cimport vector
from collections import Counter
import srsly
from ...structs cimport TokenC
from ...typedefs cimport attr_t, weight_t
from ._parser_utils cimport arg_max_if_valid
from .stateclass cimport StateClass
from ... import util
from ...errors import Errors
cdef weight_t MIN_SCORE = -90000
class OracleError(Exception):
pass
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
cdef StateC* st = new StateC(<const TokenC*>tokens, length)
return <void*>st
cdef int _del_state(Pool mem, void* state, void* x) except -1:
cdef StateC* st = <StateC*>state
del st
cdef class TransitionSystem:
def __init__(
self,
StringStore string_table,
labels_by_action=None,
min_freq=None,
incorrect_spans_key=None
):
self.cfg = {"neg_key": incorrect_spans_key}
self.mem = Pool()
self.strings = string_table
self.n_moves = 0
self._size = 100
self.c = <Transition*>self.mem.alloc(self._size, sizeof(Transition))
self.labels = {}
if labels_by_action:
self.initialize_actions(labels_by_action, min_freq=min_freq)
self.root_label = self.strings.add('ROOT')
self.init_beam_state = _init_state
self.del_beam_state = _del_state
def __reduce__(self):
# TODO: This loses the 'cfg'
return (self.__class__, (self.strings, self.labels), None, None)
@property
def neg_key(self):
return self.cfg.get("neg_key")
def init_batch(self, docs):
cdef StateClass state
states = []
offset = 0
for doc in docs:
state = StateClass(doc, offset=offset)
states.append(state)
offset += len(doc)
return states
def follow_history(self, doc, history):
cdef int clas
cdef StateClass state = StateClass(doc)
for clas in history:
action = self.c[clas]
action.do(state.c, action.label)
state.c.history.push_back(clas)
return state
def get_oracle_sequence(self, Example example, _debug=False):
if not self.has_gold(example):
return []
states, golds, _ = self.init_gold_batch([example])
if not states:
return []
state = states[0]
gold = golds[0]
if _debug:
return self.get_oracle_sequence_from_state(state, gold, _debug=example)
else:
return self.get_oracle_sequence_from_state(state, gold)
def get_oracle_sequence_from_state(self, StateClass state, gold, _debug=None):
if state.is_final():
return []
cdef Pool mem = Pool()
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
assert self.n_moves > 0
costs = <float*>mem.alloc(self.n_moves, sizeof(float))
is_valid = <int*>mem.alloc(self.n_moves, sizeof(int))
history = []
debug_log = []
while not state.is_final():
self.set_costs(is_valid, costs, state.c, gold)
for i in range(self.n_moves):
if is_valid[i] and costs[i] <= 0:
action = self.c[i]
history.append(i)
if _debug:
s0 = state.S(0)
b0 = state.B(0)
example = _debug
debug_log.append(" ".join((
self.get_class_name(i),
"S0=", (example.x[s0].text if s0 >= 0 else "__"),
"B0=", (example.x[b0].text if b0 >= 0 else "__"),
"S0 head?", str(state.has_head(state.S(0))),
)))
action.do(state.c, action.label)
state.c.history.push_back(i)
break
else:
if _debug:
example = _debug
print("Actions")
for i in range(self.n_moves):
print(self.get_class_name(i))
print("Gold")
for token in example.y:
print(token.text, token.dep_, token.head.text)
s0 = state.S(0)
b0 = state.B(0)
debug_log.append(" ".join((
"?",
"S0=", (example.x[s0].text if s0 >= 0 else "-"),
"B0=", (example.x[b0].text if b0 >= 0 else "-"),
"S0 head?", str(state.has_head(state.S(0))),
)))
print("\n".join(debug_log))
raise ValueError(Errors.E024)
return history
def apply_transition(self, StateClass state, name):
if not self.is_valid(state, name):
raise ValueError(Errors.E170.format(name=name))
action = self.lookup_transition(name)
action.do(state.c, action.label)
state.c.history.push_back(action.clas)
def apply_actions(self, states, const int[::1] actions):
assert len(states) == actions.shape[0]
cdef StateClass state
cdef vector[StateC*] c_states
c_states.resize(len(states))
cdef int i
for (i, state) in enumerate(states):
c_states[i] = state.c
c_apply_actions(self, &c_states[0], &actions[0], actions.shape[0])
return [state for state in states if not state.c.is_final()]
def transition_states(self, states, float[:, ::1] scores):
assert len(states) == scores.shape[0]
cdef StateClass state
cdef float* c_scores = &scores[0, 0]
cdef vector[StateC*] c_states
for state in states:
c_states.push_back(state.c)
c_transition_batch(self, &c_states[0], c_scores, scores.shape[1], scores.shape[0])
return [state for state in states if not state.c.is_final()]
cdef Transition lookup_transition(self, object name) except *:
raise NotImplementedError
cdef Transition init_transition(self, int clas, int move, attr_t label) except *:
raise NotImplementedError
def is_valid(self, StateClass stcls, move_name):
action = self.lookup_transition(move_name)
return action.is_valid(stcls.c, action.label)
cdef int set_valid(self, int* is_valid, const StateC* st) nogil:
cdef int i
for i in range(self.n_moves):
is_valid[i] = self.c[i].is_valid(st, self.c[i].label)
cdef int set_costs(self, int* is_valid, weight_t* costs,
const StateC* state, gold) except -1:
raise NotImplementedError
def get_class_name(self, int clas):
act = self.c[clas]
return self.move_name(act.move, act.label)
def initialize_actions(self, labels_by_action, min_freq=None):
self.labels = {}
self.n_moves = 0
added_labels = []
added_actions = {}
for action, label_freqs in sorted(labels_by_action.items()):
action = int(action)
# Make sure we take a copy here, and that we get a Counter
self.labels[action] = Counter()
# Have to be careful here: Sorting must be stable, or our model
# won't be read back in correctly.
sorted_labels = [(f, L) for L, f in label_freqs.items()]
sorted_labels.sort()
sorted_labels.reverse()
for freq, label_str in sorted_labels:
if freq < 0:
added_labels.append((freq, label_str))
added_actions.setdefault(label_str, []).append(action)
else:
self.add_action(int(action), label_str)
self.labels[action][label_str] = freq
added_labels.sort(reverse=True)
for freq, label_str in added_labels:
for action in added_actions[label_str]:
self.add_action(int(action), label_str)
self.labels[action][label_str] = freq
def add_action(self, int action, label_name):
cdef attr_t label_id
if not isinstance(label_name, int) and \
not isinstance(label_name, long):
label_id = self.strings.add(label_name)
else:
label_id = label_name
# Check we're not creating a move we already have, so that this is
# idempotent
for trans in self.c[:self.n_moves]:
if trans.move == action and trans.label == label_id:
return 0
if self.n_moves >= self._size:
self._size *= 2
self.c = <Transition*>self.mem.realloc(self.c, self._size * sizeof(self.c[0]))
self.c[self.n_moves] = self.init_transition(self.n_moves, action, label_id)
self.n_moves += 1
# Add the new (action, label) pair, making up a frequency for it if
# necessary. To preserve sort order, the frequency needs to be lower
# than previous frequencies.
if self.labels.get(action, []):
new_freq = min(self.labels[action].values())
else:
self.labels[action] = Counter()
new_freq = -1
if new_freq > 0:
new_freq = 0
self.labels[action][label_name] = new_freq-1
return 1
def to_disk(self, path, **kwargs):
with path.open('wb') as file_:
file_.write(self.to_bytes(**kwargs))
def from_disk(self, path, **kwargs):
with path.open('rb') as file_:
byte_data = file_.read()
self.from_bytes(byte_data, **kwargs)
return self
def to_bytes(self, exclude=tuple()):
serializers = {
'moves': lambda: srsly.json_dumps(self.labels),
'strings': lambda: self.strings.to_bytes(),
'cfg': lambda: self.cfg
}
return util.to_bytes(serializers, exclude)
def from_bytes(self, bytes_data, exclude=tuple()):
# We're adding a new field, 'cfg', here and we don't want to break
# previous models that don't have it.
msg = srsly.msgpack_loads(bytes_data)
labels = {}
if 'moves' not in exclude:
labels.update(srsly.json_loads(msg['moves']))
if 'strings' not in exclude:
self.strings.from_bytes(msg['strings'])
if 'cfg' not in exclude and 'cfg' in msg:
self.cfg.update(msg['cfg'])
self.initialize_actions(labels)
return self
cdef void c_apply_actions(TransitionSystem moves, StateC** states, const int* actions,
int batch_size) nogil:
cdef int i
cdef Transition action
cdef StateC* state
for i in range(batch_size):
state = states[i]
action = moves.c[actions[i]]
action.do(state, action.label)
state.history.push_back(action.clas)
cdef void c_transition_batch(TransitionSystem moves, StateC** states, const float* scores,
int nr_class, int batch_size) nogil:
is_valid = <int*>calloc(moves.n_moves, sizeof(int))
cdef int i, guess
cdef Transition action
for i in range(batch_size):
moves.set_valid(is_valid, states[i])
guess = arg_max_if_valid(&scores[i*nr_class], is_valid, nr_class)
if guess == -1:
# This shouldn't happen, but it's hard to raise an error here,
# and we don't want to infinite loop. So, force to end state.
states[i].force_final()
else:
action = moves.c[guess]
action.do(states[i], action.label)
states[i].history.push_back(guess)
free(is_valid)