mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* fixing argument order for rehearse * rehearse test for ner and tagger * rehearse bugfix * added test for parser * test for multilabel textcat * rehearse fix * remove debug line * Update spacy/tests/training/test_rehearse.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/tests/training/test_rehearse.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Kádár Ákos <akos@onyx.uvt.nl> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			401 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Iterable, Tuple, Optional, Dict, List, Callable, Any
 | 
						|
from thinc.api import get_array_module, Model, Optimizer, set_dropout_rate, Config
 | 
						|
from thinc.types import Floats2d
 | 
						|
import numpy
 | 
						|
from itertools import islice
 | 
						|
 | 
						|
from .trainable_pipe import TrainablePipe
 | 
						|
from ..language import Language
 | 
						|
from ..training import Example, validate_examples, validate_get_examples
 | 
						|
from ..errors import Errors
 | 
						|
from ..scorer import Scorer
 | 
						|
from ..tokens import Doc
 | 
						|
from ..util import registry
 | 
						|
from ..vocab import Vocab
 | 
						|
 | 
						|
 | 
						|
single_label_default_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatEnsemble.v2"
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2Vec.v2"
 | 
						|
 | 
						|
[model.tok2vec.embed]
 | 
						|
@architectures = "spacy.MultiHashEmbed.v2"
 | 
						|
width = 64
 | 
						|
rows = [2000, 2000, 1000, 1000, 1000, 1000]
 | 
						|
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
 | 
						|
include_static_vectors = false
 | 
						|
 | 
						|
[model.tok2vec.encode]
 | 
						|
@architectures = "spacy.MaxoutWindowEncoder.v2"
 | 
						|
width = ${model.tok2vec.embed.width}
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
depth = 2
 | 
						|
 | 
						|
[model.linear_model]
 | 
						|
@architectures = "spacy.TextCatBOW.v2"
 | 
						|
exclusive_classes = true
 | 
						|
ngram_size = 1
 | 
						|
no_output_layer = false
 | 
						|
"""
 | 
						|
DEFAULT_SINGLE_TEXTCAT_MODEL = Config().from_str(single_label_default_config)["model"]
 | 
						|
 | 
						|
single_label_bow_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatBOW.v2"
 | 
						|
exclusive_classes = true
 | 
						|
ngram_size = 1
 | 
						|
no_output_layer = false
 | 
						|
"""
 | 
						|
 | 
						|
single_label_cnn_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatCNN.v2"
 | 
						|
exclusive_classes = true
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v2"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
embed_size = 2000
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@Language.factory(
 | 
						|
    "textcat",
 | 
						|
    assigns=["doc.cats"],
 | 
						|
    default_config={
 | 
						|
        "threshold": 0.5,
 | 
						|
        "model": DEFAULT_SINGLE_TEXTCAT_MODEL,
 | 
						|
        "scorer": {"@scorers": "spacy.textcat_scorer.v1"},
 | 
						|
    },
 | 
						|
    default_score_weights={
 | 
						|
        "cats_score": 1.0,
 | 
						|
        "cats_score_desc": None,
 | 
						|
        "cats_micro_p": None,
 | 
						|
        "cats_micro_r": None,
 | 
						|
        "cats_micro_f": None,
 | 
						|
        "cats_macro_p": None,
 | 
						|
        "cats_macro_r": None,
 | 
						|
        "cats_macro_f": None,
 | 
						|
        "cats_macro_auc": None,
 | 
						|
        "cats_f_per_type": None,
 | 
						|
        "cats_macro_auc_per_type": None,
 | 
						|
    },
 | 
						|
)
 | 
						|
def make_textcat(
 | 
						|
    nlp: Language,
 | 
						|
    name: str,
 | 
						|
    model: Model[List[Doc], List[Floats2d]],
 | 
						|
    threshold: float,
 | 
						|
    scorer: Optional[Callable],
 | 
						|
) -> "TextCategorizer":
 | 
						|
    """Create a TextCategorizer component. The text categorizer predicts categories
 | 
						|
    over a whole document. It can learn one or more labels, and the labels are considered
 | 
						|
    to be mutually exclusive (i.e. one true label per doc).
 | 
						|
 | 
						|
    model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
 | 
						|
        scores for each category.
 | 
						|
    threshold (float): Cutoff to consider a prediction "positive".
 | 
						|
    scorer (Optional[Callable]): The scoring method.
 | 
						|
    """
 | 
						|
    return TextCategorizer(nlp.vocab, model, name, threshold=threshold, scorer=scorer)
 | 
						|
 | 
						|
 | 
						|
def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
 | 
						|
    return Scorer.score_cats(
 | 
						|
        examples,
 | 
						|
        "cats",
 | 
						|
        multi_label=False,
 | 
						|
        **kwargs,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.scorers("spacy.textcat_scorer.v1")
 | 
						|
def make_textcat_scorer():
 | 
						|
    return textcat_score
 | 
						|
 | 
						|
 | 
						|
class TextCategorizer(TrainablePipe):
 | 
						|
    """Pipeline component for single-label text classification.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/textcategorizer
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab: Vocab,
 | 
						|
        model: Model,
 | 
						|
        name: str = "textcat",
 | 
						|
        *,
 | 
						|
        threshold: float,
 | 
						|
        scorer: Optional[Callable] = textcat_score,
 | 
						|
    ) -> None:
 | 
						|
        """Initialize a text categorizer for single-label classification.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocabulary.
 | 
						|
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
						|
        name (str): The component instance name, used to add entries to the
 | 
						|
            losses during training.
 | 
						|
        threshold (float): Cutoff to consider a prediction "positive".
 | 
						|
        scorer (Optional[Callable]): The scoring method. Defaults to
 | 
						|
                Scorer.score_cats for the attribute "cats".
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#init
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        self._rehearsal_model = None
 | 
						|
        cfg = {"labels": [], "threshold": threshold, "positive_label": None}
 | 
						|
        self.cfg = dict(cfg)
 | 
						|
        self.scorer = scorer
 | 
						|
 | 
						|
    @property
 | 
						|
    def support_missing_values(self):
 | 
						|
        # There are no missing values as the textcat should always
 | 
						|
        # predict exactly one label. All other labels are 0.0
 | 
						|
        # Subclasses may override this property to change internal behaviour.
 | 
						|
        return False
 | 
						|
 | 
						|
    @property
 | 
						|
    def labels(self) -> Tuple[str]:
 | 
						|
        """RETURNS (Tuple[str]): The labels currently added to the component.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#labels
 | 
						|
        """
 | 
						|
        return tuple(self.cfg["labels"])  # type: ignore[arg-type, return-value]
 | 
						|
 | 
						|
    @property
 | 
						|
    def label_data(self) -> List[str]:
 | 
						|
        """RETURNS (List[str]): Information about the component's labels.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#label_data
 | 
						|
        """
 | 
						|
        return self.labels  # type: ignore[return-value]
 | 
						|
 | 
						|
    def predict(self, docs: Iterable[Doc]):
 | 
						|
        """Apply the pipeline's model to a batch of docs, without modifying them.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to predict.
 | 
						|
        RETURNS: The models prediction for each document.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#predict
 | 
						|
        """
 | 
						|
        if not any(len(doc) for doc in docs):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            tensors = [doc.tensor for doc in docs]
 | 
						|
            xp = get_array_module(tensors)
 | 
						|
            scores = xp.zeros((len(list(docs)), len(self.labels)))
 | 
						|
            return scores
 | 
						|
        scores = self.model.predict(docs)
 | 
						|
        scores = self.model.ops.asarray(scores)
 | 
						|
        return scores
 | 
						|
 | 
						|
    def set_annotations(self, docs: Iterable[Doc], scores) -> None:
 | 
						|
        """Modify a batch of Doc objects, using pre-computed scores.
 | 
						|
 | 
						|
        docs (Iterable[Doc]): The documents to modify.
 | 
						|
        scores: The scores to set, produced by TextCategorizer.predict.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#set_annotations
 | 
						|
        """
 | 
						|
        for i, doc in enumerate(docs):
 | 
						|
            for j, label in enumerate(self.labels):
 | 
						|
                doc.cats[label] = float(scores[i, j])
 | 
						|
 | 
						|
    def update(
 | 
						|
        self,
 | 
						|
        examples: Iterable[Example],
 | 
						|
        *,
 | 
						|
        drop: float = 0.0,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
        losses: Optional[Dict[str, float]] = None,
 | 
						|
    ) -> Dict[str, float]:
 | 
						|
        """Learn from a batch of documents and gold-standard information,
 | 
						|
        updating the pipe's model. Delegates to predict and get_loss.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#update
 | 
						|
        """
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        losses.setdefault(self.name, 0.0)
 | 
						|
        validate_examples(examples, "TextCategorizer.update")
 | 
						|
        self._validate_categories(examples)
 | 
						|
        if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            return losses
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
 | 
						|
        loss, d_scores = self.get_loss(examples, scores)
 | 
						|
        bp_scores(d_scores)
 | 
						|
        if sgd is not None:
 | 
						|
            self.finish_update(sgd)
 | 
						|
        losses[self.name] += loss
 | 
						|
        return losses
 | 
						|
 | 
						|
    def rehearse(
 | 
						|
        self,
 | 
						|
        examples: Iterable[Example],
 | 
						|
        *,
 | 
						|
        drop: float = 0.0,
 | 
						|
        sgd: Optional[Optimizer] = None,
 | 
						|
        losses: Optional[Dict[str, float]] = None,
 | 
						|
    ) -> Dict[str, float]:
 | 
						|
        """Perform a "rehearsal" update from a batch of data. Rehearsal updates
 | 
						|
        teach the current model to make predictions similar to an initial model,
 | 
						|
        to try to address the "catastrophic forgetting" problem. This feature is
 | 
						|
        experimental.
 | 
						|
 | 
						|
        examples (Iterable[Example]): A batch of Example objects.
 | 
						|
        drop (float): The dropout rate.
 | 
						|
        sgd (thinc.api.Optimizer): The optimizer.
 | 
						|
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
						|
            Updated using the component name as the key.
 | 
						|
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#rehearse
 | 
						|
        """
 | 
						|
        if losses is None:
 | 
						|
            losses = {}
 | 
						|
        losses.setdefault(self.name, 0.0)
 | 
						|
        if self._rehearsal_model is None:
 | 
						|
            return losses
 | 
						|
        validate_examples(examples, "TextCategorizer.rehearse")
 | 
						|
        self._validate_categories(examples)
 | 
						|
        docs = [eg.predicted for eg in examples]
 | 
						|
        if not any(len(doc) for doc in docs):
 | 
						|
            # Handle cases where there are no tokens in any docs.
 | 
						|
            return losses
 | 
						|
        set_dropout_rate(self.model, drop)
 | 
						|
        scores, bp_scores = self.model.begin_update(docs)
 | 
						|
        target, _ = self._rehearsal_model.begin_update(docs)
 | 
						|
        gradient = scores - target
 | 
						|
        bp_scores(gradient)
 | 
						|
        if sgd is not None:
 | 
						|
            self.finish_update(sgd)
 | 
						|
        losses[self.name] += (gradient**2).sum()
 | 
						|
        return losses
 | 
						|
 | 
						|
    def _examples_to_truth(
 | 
						|
        self, examples: Iterable[Example]
 | 
						|
    ) -> Tuple[numpy.ndarray, numpy.ndarray]:
 | 
						|
        nr_examples = len(list(examples))
 | 
						|
        truths = numpy.zeros((nr_examples, len(self.labels)), dtype="f")
 | 
						|
        not_missing = numpy.ones((nr_examples, len(self.labels)), dtype="f")
 | 
						|
        for i, eg in enumerate(examples):
 | 
						|
            for j, label in enumerate(self.labels):
 | 
						|
                if label in eg.reference.cats:
 | 
						|
                    truths[i, j] = eg.reference.cats[label]
 | 
						|
                elif self.support_missing_values:
 | 
						|
                    not_missing[i, j] = 0.0
 | 
						|
        truths = self.model.ops.asarray(truths)  # type: ignore
 | 
						|
        return truths, not_missing  # type: ignore
 | 
						|
 | 
						|
    def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
 | 
						|
        """Find the loss and gradient of loss for the batch of documents and
 | 
						|
        their predicted scores.
 | 
						|
 | 
						|
        examples (Iterable[Examples]): The batch of examples.
 | 
						|
        scores: Scores representing the model's predictions.
 | 
						|
        RETURNS (Tuple[float, float]): The loss and the gradient.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#get_loss
 | 
						|
        """
 | 
						|
        validate_examples(examples, "TextCategorizer.get_loss")
 | 
						|
        self._validate_categories(examples)
 | 
						|
        truths, not_missing = self._examples_to_truth(examples)
 | 
						|
        not_missing = self.model.ops.asarray(not_missing)  # type: ignore
 | 
						|
        d_scores = scores - truths
 | 
						|
        d_scores *= not_missing
 | 
						|
        mean_square_error = (d_scores**2).mean()
 | 
						|
        return float(mean_square_error), d_scores
 | 
						|
 | 
						|
    def add_label(self, label: str) -> int:
 | 
						|
        """Add a new label to the pipe.
 | 
						|
 | 
						|
        label (str): The label to add.
 | 
						|
        RETURNS (int): 0 if label is already present, otherwise 1.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#add_label
 | 
						|
        """
 | 
						|
        if not isinstance(label, str):
 | 
						|
            raise ValueError(Errors.E187)
 | 
						|
        if label in self.labels:
 | 
						|
            return 0
 | 
						|
        self._allow_extra_label()
 | 
						|
        self.cfg["labels"].append(label)  # type: ignore[attr-defined]
 | 
						|
        if self.model and "resize_output" in self.model.attrs:
 | 
						|
            self.model = self.model.attrs["resize_output"](self.model, len(self.labels))
 | 
						|
        self.vocab.strings.add(label)
 | 
						|
        return 1
 | 
						|
 | 
						|
    def initialize(
 | 
						|
        self,
 | 
						|
        get_examples: Callable[[], Iterable[Example]],
 | 
						|
        *,
 | 
						|
        nlp: Optional[Language] = None,
 | 
						|
        labels: Optional[Iterable[str]] = None,
 | 
						|
        positive_label: Optional[str] = None,
 | 
						|
    ) -> None:
 | 
						|
        """Initialize the pipe for training, using a representative set
 | 
						|
        of data examples.
 | 
						|
 | 
						|
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
						|
            returns a representative sample of gold-standard Example objects.
 | 
						|
        nlp (Language): The current nlp object the component is part of.
 | 
						|
        labels (Optional[Iterable[str]]): The labels to add to the component, typically generated by the
 | 
						|
            `init labels` command. If no labels are provided, the get_examples
 | 
						|
            callback is used to extract the labels from the data.
 | 
						|
        positive_label (Optional[str]): The positive label for a binary task with exclusive classes,
 | 
						|
            `None` otherwise and by default.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#initialize
 | 
						|
        """
 | 
						|
        validate_get_examples(get_examples, "TextCategorizer.initialize")
 | 
						|
        self._validate_categories(get_examples())
 | 
						|
        if labels is None:
 | 
						|
            for example in get_examples():
 | 
						|
                for cat in example.y.cats:
 | 
						|
                    self.add_label(cat)
 | 
						|
        else:
 | 
						|
            for label in labels:
 | 
						|
                self.add_label(label)
 | 
						|
        if len(self.labels) < 2:
 | 
						|
            raise ValueError(Errors.E867)
 | 
						|
        if positive_label is not None:
 | 
						|
            if positive_label not in self.labels:
 | 
						|
                err = Errors.E920.format(pos_label=positive_label, labels=self.labels)
 | 
						|
                raise ValueError(err)
 | 
						|
            if len(self.labels) != 2:
 | 
						|
                err = Errors.E919.format(pos_label=positive_label, labels=self.labels)
 | 
						|
                raise ValueError(err)
 | 
						|
        self.cfg["positive_label"] = positive_label
 | 
						|
        subbatch = list(islice(get_examples(), 10))
 | 
						|
        doc_sample = [eg.reference for eg in subbatch]
 | 
						|
        label_sample, _ = self._examples_to_truth(subbatch)
 | 
						|
        self._require_labels()
 | 
						|
        assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        self.model.initialize(X=doc_sample, Y=label_sample)
 | 
						|
 | 
						|
    def _validate_categories(self, examples: Iterable[Example]):
 | 
						|
        """Check whether the provided examples all have single-label cats annotations."""
 | 
						|
        for ex in examples:
 | 
						|
            if list(ex.reference.cats.values()).count(1.0) > 1:
 | 
						|
                raise ValueError(Errors.E895.format(value=ex.reference.cats))
 |