mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			648 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			648 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| 
 | |
| from spacy import registry
 | |
| from spacy.tokens import Doc, Span
 | |
| from spacy.language import Language
 | |
| from spacy.lang.en import English
 | |
| from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities
 | |
| from spacy.pipeline import SpanRuler
 | |
| from spacy.pipeline.ner import DEFAULT_NER_MODEL
 | |
| from spacy.errors import MatchPatternError
 | |
| from spacy.tests.util import make_tempdir
 | |
| 
 | |
| from thinc.api import NumpyOps, get_current_ops
 | |
| 
 | |
| ENTITY_RULERS = ["entity_ruler", "future_entity_ruler"]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return Language()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| @registry.misc("entity_ruler_patterns")
 | |
| def patterns():
 | |
|     return [
 | |
|         {"label": "HELLO", "pattern": "hello world"},
 | |
|         {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
 | |
|         {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
 | |
|         {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
 | |
|         {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
 | |
|         {"label": "TECH_ORG", "pattern": "Microsoft", "id": "a2"},
 | |
|     ]
 | |
| 
 | |
| 
 | |
| @Language.component("add_ent")
 | |
| def add_ent_component(doc):
 | |
|     doc.ents = [Span(doc, 0, 3, label="ORG")]
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(3345)
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_issue3345(entity_ruler_factory):
 | |
|     """Test case where preset entity crosses sentence boundary."""
 | |
|     nlp = English()
 | |
|     doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
 | |
|     doc[4].is_sent_start = True
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns([{"label": "GPE", "pattern": "New York"}])
 | |
|     cfg = {"model": DEFAULT_NER_MODEL}
 | |
|     model = registry.resolve(cfg, validate=True)["model"]
 | |
|     ner = EntityRecognizer(doc.vocab, model)
 | |
|     # Add the OUT action. I wouldn't have thought this would be necessary...
 | |
|     ner.moves.add_action(5, "")
 | |
|     ner.add_label("GPE")
 | |
|     doc = ruler(doc)
 | |
|     # Get into the state just before "New"
 | |
|     state = ner.moves.init_batch([doc])[0]
 | |
|     ner.moves.apply_transition(state, "O")
 | |
|     ner.moves.apply_transition(state, "O")
 | |
|     ner.moves.apply_transition(state, "O")
 | |
|     # Check that B-GPE is valid.
 | |
|     assert ner.moves.is_valid(state, "B-GPE")
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(4849)
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_issue4849(entity_ruler_factory):
 | |
|     nlp = English()
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"},
 | |
|         {"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"},
 | |
|     ]
 | |
|     ruler = nlp.add_pipe(
 | |
|         entity_ruler_factory,
 | |
|         name="entity_ruler",
 | |
|         config={"phrase_matcher_attr": "LOWER"},
 | |
|     )
 | |
|     ruler.add_patterns(patterns)
 | |
|     text = """
 | |
|     The left is starting to take aim at Democratic front-runner Joe Biden.
 | |
|     Sen. Bernie Sanders joined in her criticism: "There is no 'middle ground' when it comes to climate policy."
 | |
|     """
 | |
|     # USING 1 PROCESS
 | |
|     count_ents = 0
 | |
|     for doc in nlp.pipe([text], n_process=1):
 | |
|         count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
 | |
|     assert count_ents == 2
 | |
|     # USING 2 PROCESSES
 | |
|     if isinstance(get_current_ops, NumpyOps):
 | |
|         count_ents = 0
 | |
|         for doc in nlp.pipe([text], n_process=2):
 | |
|             count_ents += len([ent for ent in doc.ents if ent.ent_id > 0])
 | |
|         assert count_ents == 2
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(5918)
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_issue5918(entity_ruler_factory):
 | |
|     # Test edge case when merging entities.
 | |
|     nlp = English()
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "ORG", "pattern": "Digicon Inc"},
 | |
|         {"label": "ORG", "pattern": "Rotan Mosle Inc's"},
 | |
|         {"label": "ORG", "pattern": "Rotan Mosle Technology Partners Ltd"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
| 
 | |
|     text = """
 | |
|         Digicon Inc said it has completed the previously-announced disposition
 | |
|         of its computer systems division to an investment group led by
 | |
|         Rotan Mosle Inc's Rotan Mosle Technology Partners Ltd affiliate.
 | |
|         """
 | |
|     doc = nlp(text)
 | |
|     assert len(doc.ents) == 3
 | |
|     # make it so that the third span's head is within the entity (ent_iob=I)
 | |
|     # bug #5918 would wrongly transfer that I to the full entity, resulting in 2 instead of 3 final ents.
 | |
|     # TODO: test for logging here
 | |
|     # with pytest.warns(UserWarning):
 | |
|     #     doc[29].head = doc[33]
 | |
|     doc = merge_entities(doc)
 | |
|     assert len(doc.ents) == 3
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(8168)
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_issue8168(entity_ruler_factory):
 | |
|     nlp = English()
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "ORG", "pattern": "Apple"},
 | |
|         {
 | |
|             "label": "GPE",
 | |
|             "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}],
 | |
|             "id": "san-francisco",
 | |
|         },
 | |
|         {
 | |
|             "label": "GPE",
 | |
|             "pattern": [{"LOWER": "san"}, {"LOWER": "fran"}],
 | |
|             "id": "san-francisco",
 | |
|         },
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("San Francisco San Fran")
 | |
|     assert all(t.ent_id_ == "san-francisco" for t in doc)
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(8216)
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_fix8216(nlp, patterns, entity_ruler_factory):
 | |
|     """Test that patterns don't get added excessively."""
 | |
|     ruler = nlp.add_pipe(
 | |
|         entity_ruler_factory, name="entity_ruler", config={"validate": True}
 | |
|     )
 | |
|     ruler.add_patterns(patterns)
 | |
|     pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
 | |
|     assert pattern_count > 0
 | |
|     ruler.add_patterns([])
 | |
|     after_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
 | |
|     assert after_count == pattern_count
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_init(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     assert len(ruler) == len(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     assert "HELLO" in ruler
 | |
|     assert "BYE" in ruler
 | |
|     nlp.remove_pipe("entity_ruler")
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("hello world bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "HELLO"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_no_patterns_warns(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     assert len(ruler) == 0
 | |
|     assert len(ruler.labels) == 0
 | |
|     nlp.remove_pipe("entity_ruler")
 | |
|     nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     assert nlp.pipe_names == ["entity_ruler"]
 | |
|     with pytest.warns(UserWarning):
 | |
|         doc = nlp("hello world bye bye")
 | |
|     assert len(doc.ents) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_init_patterns(nlp, patterns, entity_ruler_factory):
 | |
|     # initialize with patterns
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     assert len(ruler.labels) == 0
 | |
|     ruler.initialize(lambda: [], patterns=patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     doc = nlp("hello world bye bye")
 | |
|     assert doc.ents[0].label_ == "HELLO"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
|     nlp.remove_pipe("entity_ruler")
 | |
|     # initialize with patterns from misc registry
 | |
|     nlp.config["initialize"]["components"]["entity_ruler"] = {
 | |
|         "patterns": {"@misc": "entity_ruler_patterns"}
 | |
|     }
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     assert len(ruler.labels) == 0
 | |
|     nlp.initialize()
 | |
|     assert len(ruler.labels) == 4
 | |
|     doc = nlp("hello world bye bye")
 | |
|     assert doc.ents[0].label_ == "HELLO"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_init_clear(nlp, patterns, entity_ruler_factory):
 | |
|     """Test that initialization clears patterns."""
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     ruler.initialize(lambda: [])
 | |
|     assert len(ruler.labels) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_clear(nlp, patterns, entity_ruler_factory):
 | |
|     """Test that initialization clears patterns."""
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     doc = nlp("hello world")
 | |
|     assert len(doc.ents) == 1
 | |
|     ruler.clear()
 | |
|     assert len(ruler.labels) == 0
 | |
|     with pytest.warns(UserWarning):
 | |
|         doc = nlp("hello world")
 | |
|     assert len(doc.ents) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_existing(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe("add_ent", before="entity_ruler")
 | |
|     doc = nlp("OH HELLO WORLD bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "ORG"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_existing_overwrite(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(
 | |
|         entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
 | |
|     )
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe("add_ent", before="entity_ruler")
 | |
|     doc = nlp("OH HELLO WORLD bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "HELLO"
 | |
|     assert doc.ents[0].text == "HELLO"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_existing_complex(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(
 | |
|         entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
 | |
|     )
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe("add_ent", before="entity_ruler")
 | |
|     doc = nlp("foo foo bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "COMPLEX"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
|     assert len(doc.ents[0]) == 2
 | |
|     assert len(doc.ents[1]) == 2
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_entity_id(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(
 | |
|         entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
 | |
|     )
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("Apple is a technology company")
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "TECH_ORG"
 | |
|     assert doc.ents[0].ent_id_ == "a1"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_cfg_ent_id_sep(nlp, patterns, entity_ruler_factory):
 | |
|     config = {"overwrite_ents": True, "ent_id_sep": "**"}
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler", config=config)
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("Apple is a technology company")
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         assert "TECH_ORG**a1" in ruler.phrase_patterns
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "TECH_ORG"
 | |
|     assert doc.ents[0].ent_id_ == "a1"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_serialize_bytes(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns)
 | |
|     assert len(ruler) == len(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     ruler_bytes = ruler.to_bytes()
 | |
|     new_ruler = EntityRuler(nlp)
 | |
|     assert len(new_ruler) == 0
 | |
|     assert len(new_ruler.labels) == 0
 | |
|     new_ruler = new_ruler.from_bytes(ruler_bytes)
 | |
|     assert len(new_ruler) == len(patterns)
 | |
|     assert len(new_ruler.labels) == 4
 | |
|     assert len(new_ruler.patterns) == len(ruler.patterns)
 | |
|     for pattern in ruler.patterns:
 | |
|         assert pattern in new_ruler.patterns
 | |
|     assert sorted(new_ruler.labels) == sorted(ruler.labels)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_serialize_phrase_matcher_attr_bytes(
 | |
|     nlp, patterns, entity_ruler_factory
 | |
| ):
 | |
|     ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
 | |
|     assert len(ruler) == len(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     ruler_bytes = ruler.to_bytes()
 | |
|     new_ruler = EntityRuler(nlp)
 | |
|     assert len(new_ruler) == 0
 | |
|     assert len(new_ruler.labels) == 0
 | |
|     assert new_ruler.phrase_matcher_attr is None
 | |
|     new_ruler = new_ruler.from_bytes(ruler_bytes)
 | |
|     assert len(new_ruler) == len(patterns)
 | |
|     assert len(new_ruler.labels) == 4
 | |
|     assert new_ruler.phrase_matcher_attr == "LOWER"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_validate(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     validated_ruler = EntityRuler(nlp, validate=True)
 | |
| 
 | |
|     valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
 | |
|     invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
 | |
| 
 | |
|     # invalid pattern raises error without validate
 | |
|     with pytest.raises(ValueError):
 | |
|         ruler.add_patterns([invalid_pattern])
 | |
| 
 | |
|     # valid pattern is added without errors with validate
 | |
|     validated_ruler.add_patterns([valid_pattern])
 | |
| 
 | |
|     # invalid pattern raises error with validate
 | |
|     with pytest.raises(MatchPatternError):
 | |
|         validated_ruler.add_patterns([invalid_pattern])
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_properties(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"])
 | |
|     assert sorted(ruler.ent_ids) == ["a1", "a2"]
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_overlapping_spans(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "FOOBAR", "pattern": "foo bar"},
 | |
|         {"label": "BARBAZ", "pattern": "bar baz"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("foo bar baz")
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "FOOBAR"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("n_process", [1, 2])
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_multiprocessing(nlp, n_process, entity_ruler_factory):
 | |
|     if isinstance(get_current_ops, NumpyOps) or n_process < 2:
 | |
|         texts = ["I enjoy eating Pizza Hut pizza."]
 | |
| 
 | |
|         patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}]
 | |
| 
 | |
|         ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|         ruler.add_patterns(patterns)
 | |
| 
 | |
|         for doc in nlp.pipe(texts, n_process=2):
 | |
|             for ent in doc.ents:
 | |
|                 assert ent.ent_id_ == "1234"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_serialize_jsonl(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     with make_tempdir() as d:
 | |
|         ruler.to_disk(d / "test_ruler.jsonl")
 | |
|         ruler.from_disk(d / "test_ruler.jsonl")  # read from an existing jsonl file
 | |
|         with pytest.raises(ValueError):
 | |
|             ruler.from_disk(d / "non_existing.jsonl")  # read from a bad jsonl file
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_serialize_dir(nlp, patterns, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     ruler.add_patterns(patterns)
 | |
|     with make_tempdir() as d:
 | |
|         ruler.to_disk(d / "test_ruler")
 | |
|         ruler.from_disk(d / "test_ruler")  # read from an existing directory
 | |
|         with pytest.raises(ValueError):
 | |
|             ruler.from_disk(d / "non_existing_dir")  # read from a bad directory
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_remove_basic(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Dina", "id": "dina"},
 | |
|         {"label": "ORG", "pattern": "ACME", "id": "acme"},
 | |
|         {"label": "ORG", "pattern": "ACM"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("Dina went to school")
 | |
|     assert len(ruler.patterns) == 3
 | |
|     assert len(doc.ents) == 1
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         assert "PERSON||dina" in ruler.phrase_matcher
 | |
|     assert doc.ents[0].label_ == "PERSON"
 | |
|     assert doc.ents[0].text == "Dina"
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("dina")
 | |
|     else:
 | |
|         ruler.remove_by_id("dina")
 | |
|     doc = nlp("Dina went to school")
 | |
|     assert len(doc.ents) == 0
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         assert "PERSON||dina" not in ruler.phrase_matcher
 | |
|     assert len(ruler.patterns) == 2
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_remove_same_id_multiple_patterns(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Dina", "id": "dina"},
 | |
|         {"label": "ORG", "pattern": "DinaCorp", "id": "dina"},
 | |
|         {"label": "ORG", "pattern": "ACME", "id": "acme"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("Dina founded DinaCorp and ACME.")
 | |
|     assert len(ruler.patterns) == 3
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         assert "PERSON||dina" in ruler.phrase_matcher
 | |
|         assert "ORG||dina" in ruler.phrase_matcher
 | |
|     assert len(doc.ents) == 3
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("dina")
 | |
|     else:
 | |
|         ruler.remove_by_id("dina")
 | |
|     doc = nlp("Dina founded DinaCorp and ACME.")
 | |
|     assert len(ruler.patterns) == 1
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         assert "PERSON||dina" not in ruler.phrase_matcher
 | |
|         assert "ORG||dina" not in ruler.phrase_matcher
 | |
|     assert len(doc.ents) == 1
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_remove_nonexisting_pattern(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Dina", "id": "dina"},
 | |
|         {"label": "ORG", "pattern": "ACME", "id": "acme"},
 | |
|         {"label": "ORG", "pattern": "ACM"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     assert len(ruler.patterns) == 3
 | |
|     with pytest.raises(ValueError):
 | |
|         ruler.remove("nepattern")
 | |
|     if isinstance(ruler, SpanRuler):
 | |
|         with pytest.raises(ValueError):
 | |
|             ruler.remove_by_id("nepattern")
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_remove_several_patterns(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Dina", "id": "dina"},
 | |
|         {"label": "ORG", "pattern": "ACME", "id": "acme"},
 | |
|         {"label": "ORG", "pattern": "ACM"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("Dina founded her company ACME.")
 | |
|     assert len(ruler.patterns) == 3
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "PERSON"
 | |
|     assert doc.ents[0].text == "Dina"
 | |
|     assert doc.ents[1].label_ == "ORG"
 | |
|     assert doc.ents[1].text == "ACME"
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("dina")
 | |
|     else:
 | |
|         ruler.remove_by_id("dina")
 | |
|     doc = nlp("Dina founded her company ACME")
 | |
|     assert len(ruler.patterns) == 2
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "ORG"
 | |
|     assert doc.ents[0].text == "ACME"
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("acme")
 | |
|     else:
 | |
|         ruler.remove_by_id("acme")
 | |
|     doc = nlp("Dina founded her company ACME")
 | |
|     assert len(ruler.patterns) == 1
 | |
|     assert len(doc.ents) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_remove_patterns_in_a_row(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Dina", "id": "dina"},
 | |
|         {"label": "ORG", "pattern": "ACME", "id": "acme"},
 | |
|         {"label": "DATE", "pattern": "her birthday", "id": "bday"},
 | |
|         {"label": "ORG", "pattern": "ACM"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = nlp("Dina founded her company ACME on her birthday")
 | |
|     assert len(doc.ents) == 3
 | |
|     assert doc.ents[0].label_ == "PERSON"
 | |
|     assert doc.ents[0].text == "Dina"
 | |
|     assert doc.ents[1].label_ == "ORG"
 | |
|     assert doc.ents[1].text == "ACME"
 | |
|     assert doc.ents[2].label_ == "DATE"
 | |
|     assert doc.ents[2].text == "her birthday"
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("dina")
 | |
|         ruler.remove("acme")
 | |
|         ruler.remove("bday")
 | |
|     else:
 | |
|         ruler.remove_by_id("dina")
 | |
|         ruler.remove_by_id("acme")
 | |
|         ruler.remove_by_id("bday")
 | |
|     doc = nlp("Dina went to school")
 | |
|     assert len(doc.ents) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_remove_all_patterns(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [
 | |
|         {"label": "PERSON", "pattern": "Dina", "id": "dina"},
 | |
|         {"label": "ORG", "pattern": "ACME", "id": "acme"},
 | |
|         {"label": "DATE", "pattern": "her birthday", "id": "bday"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     assert len(ruler.patterns) == 3
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("dina")
 | |
|     else:
 | |
|         ruler.remove_by_id("dina")
 | |
|     assert len(ruler.patterns) == 2
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("acme")
 | |
|     else:
 | |
|         ruler.remove_by_id("acme")
 | |
|     assert len(ruler.patterns) == 1
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("bday")
 | |
|     else:
 | |
|         ruler.remove_by_id("bday")
 | |
|     assert len(ruler.patterns) == 0
 | |
|     with pytest.warns(UserWarning):
 | |
|         doc = nlp("Dina founded her company ACME on her birthday")
 | |
|         assert len(doc.ents) == 0
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
 | |
| def test_entity_ruler_remove_and_add(nlp, entity_ruler_factory):
 | |
|     ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
 | |
|     patterns = [{"label": "DATE", "pattern": "last time"}]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = ruler(
 | |
|         nlp.make_doc("I saw him last time we met, this time he brought some flowers")
 | |
|     )
 | |
|     assert len(ruler.patterns) == 1
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "DATE"
 | |
|     assert doc.ents[0].text == "last time"
 | |
|     patterns1 = [{"label": "DATE", "pattern": "this time", "id": "ttime"}]
 | |
|     ruler.add_patterns(patterns1)
 | |
|     doc = ruler(
 | |
|         nlp.make_doc("I saw him last time we met, this time he brought some flowers")
 | |
|     )
 | |
|     assert len(ruler.patterns) == 2
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "DATE"
 | |
|     assert doc.ents[0].text == "last time"
 | |
|     assert doc.ents[1].label_ == "DATE"
 | |
|     assert doc.ents[1].text == "this time"
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("ttime")
 | |
|     else:
 | |
|         ruler.remove_by_id("ttime")
 | |
|     doc = ruler(
 | |
|         nlp.make_doc("I saw him last time we met, this time he brought some flowers")
 | |
|     )
 | |
|     assert len(ruler.patterns) == 1
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "DATE"
 | |
|     assert doc.ents[0].text == "last time"
 | |
|     ruler.add_patterns(patterns1)
 | |
|     doc = ruler(
 | |
|         nlp.make_doc("I saw him last time we met, this time he brought some flowers")
 | |
|     )
 | |
|     assert len(ruler.patterns) == 2
 | |
|     assert len(doc.ents) == 2
 | |
|     patterns2 = [{"label": "DATE", "pattern": "another time", "id": "ttime"}]
 | |
|     ruler.add_patterns(patterns2)
 | |
|     doc = ruler(
 | |
|         nlp.make_doc(
 | |
|             "I saw him last time we met, this time he brought some flowers, another time some chocolate."
 | |
|         )
 | |
|     )
 | |
|     assert len(ruler.patterns) == 3
 | |
|     assert len(doc.ents) == 3
 | |
|     if isinstance(ruler, EntityRuler):
 | |
|         ruler.remove("ttime")
 | |
|     else:
 | |
|         ruler.remove_by_id("ttime")
 | |
|     doc = ruler(
 | |
|         nlp.make_doc(
 | |
|             "I saw him last time we met, this time he brought some flowers, another time some chocolate."
 | |
|         )
 | |
|     )
 | |
|     assert len(ruler.patterns) == 1
 | |
|     assert len(doc.ents) == 1
 |