mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	* Migrate regressions 1-1000 * Move serialize test to correct file * Remove tests that won't work in v3 * Migrate regressions 1000-1500 Removed regression test 1250 because v3 doesn't support the old LEX scheme anymore. * Add missing imports in serializer tests * Migrate tests 1500-2000 * Migrate regressions from 2000-2500 * Migrate regressions from 2501-3000 * Migrate regressions from 3000-3501 * Migrate regressions from 3501-4000 * Migrate regressions from 4001-4500 * Migrate regressions from 4501-5000 * Migrate regressions from 5001-5501 * Migrate regressions from 5501 to 7000 * Migrate regressions from 7001 to 8000 * Migrate remaining regression tests * Fixing missing imports * Update docs with new system [ci skip] * Update CONTRIBUTING.md - Fix formatting - Update wording * Remove lemmatizer tests in el lang * Move a few tests into the general tokenizer * Separate Doc and DocBin tests
		
			
				
	
	
		
			438 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import pytest
 | |
| import os
 | |
| import ctypes
 | |
| from pathlib import Path
 | |
| from spacy.about import __version__ as spacy_version
 | |
| from spacy import util
 | |
| from spacy import prefer_gpu, require_gpu, require_cpu
 | |
| from spacy.ml._precomputable_affine import PrecomputableAffine
 | |
| from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
 | |
| from spacy.util import dot_to_object, SimpleFrozenList, import_file
 | |
| from spacy.util import to_ternary_int
 | |
| from thinc.api import Config, Optimizer, ConfigValidationError
 | |
| from thinc.api import set_current_ops
 | |
| from spacy.training.batchers import minibatch_by_words
 | |
| from spacy.lang.en import English
 | |
| from spacy.lang.nl import Dutch
 | |
| from spacy.language import DEFAULT_CONFIG_PATH
 | |
| from spacy.schemas import ConfigSchemaTraining, TokenPattern, TokenPatternSchema
 | |
| from pydantic import ValidationError
 | |
| 
 | |
| from thinc.api import get_current_ops, NumpyOps, CupyOps
 | |
| 
 | |
| from .util import get_random_doc, make_tempdir
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def is_admin():
 | |
|     """Determine if the tests are run as admin or not."""
 | |
|     try:
 | |
|         admin = os.getuid() == 0
 | |
|     except AttributeError:
 | |
|         admin = ctypes.windll.shell32.IsUserAnAdmin() != 0
 | |
| 
 | |
|     return admin
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(6207)
 | |
| def test_issue6207(en_tokenizer):
 | |
|     doc = en_tokenizer("zero one two three four five six")
 | |
| 
 | |
|     # Make spans
 | |
|     s1 = doc[:4]
 | |
|     s2 = doc[3:6]  # overlaps with s1
 | |
|     s3 = doc[5:7]  # overlaps with s2, not s1
 | |
| 
 | |
|     result = util.filter_spans((s1, s2, s3))
 | |
|     assert s1 in result
 | |
|     assert s2 not in result
 | |
|     assert s3 in result
 | |
| 
 | |
| 
 | |
| @pytest.mark.issue(6258)
 | |
| def test_issue6258():
 | |
|     """Test that the non-empty constraint pattern field is respected"""
 | |
|     # These one is valid
 | |
|     TokenPatternSchema(pattern=[TokenPattern()])
 | |
|     # But an empty pattern list should fail to validate
 | |
|     # based on the schema's constraint
 | |
|     with pytest.raises(ValidationError):
 | |
|         TokenPatternSchema(pattern=[])
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("text", ["hello/world", "hello world"])
 | |
| def test_util_ensure_path_succeeds(text):
 | |
|     path = util.ensure_path(text)
 | |
|     assert isinstance(path, Path)
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "package,result", [("numpy", True), ("sfkodskfosdkfpsdpofkspdof", False)]
 | |
| )
 | |
| def test_util_is_package(package, result):
 | |
|     """Test that an installed package via pip is recognised by util.is_package."""
 | |
|     assert util.is_package(package) is result
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("package", ["thinc"])
 | |
| def test_util_get_package_path(package):
 | |
|     """Test that a Path object is returned for a package name."""
 | |
|     path = util.get_package_path(package)
 | |
|     assert isinstance(path, Path)
 | |
| 
 | |
| 
 | |
| def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
 | |
|     model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP).initialize()
 | |
|     assert model.get_param("W").shape == (nF, nO, nP, nI)
 | |
|     tensor = model.ops.alloc((10, nI))
 | |
|     Y, get_dX = model.begin_update(tensor)
 | |
|     assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
 | |
|     dY = model.ops.alloc((15, nO, nP))
 | |
|     ids = model.ops.alloc((15, nF))
 | |
|     ids[1, 2] = -1
 | |
|     dY[1] = 1
 | |
|     assert not model.has_grad("pad")
 | |
|     d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
 | |
|     assert d_pad[0, 2, 0, 0] == 1.0
 | |
|     ids.fill(0.0)
 | |
|     dY.fill(0.0)
 | |
|     dY[0] = 0
 | |
|     ids[1, 2] = 0
 | |
|     ids[1, 1] = -1
 | |
|     ids[1, 0] = -1
 | |
|     dY[1] = 1
 | |
|     ids[2, 0] = -1
 | |
|     dY[2] = 5
 | |
|     d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
 | |
|     assert d_pad[0, 0, 0, 0] == 6
 | |
|     assert d_pad[0, 1, 0, 0] == 1
 | |
|     assert d_pad[0, 2, 0, 0] == 0
 | |
| 
 | |
| 
 | |
| def test_prefer_gpu():
 | |
|     current_ops = get_current_ops()
 | |
|     try:
 | |
|         import cupy  # noqa: F401
 | |
| 
 | |
|         prefer_gpu()
 | |
|         assert isinstance(get_current_ops(), CupyOps)
 | |
|     except ImportError:
 | |
|         assert not prefer_gpu()
 | |
|     set_current_ops(current_ops)
 | |
| 
 | |
| 
 | |
| def test_require_gpu():
 | |
|     current_ops = get_current_ops()
 | |
|     try:
 | |
|         import cupy  # noqa: F401
 | |
| 
 | |
|         require_gpu()
 | |
|         assert isinstance(get_current_ops(), CupyOps)
 | |
|     except ImportError:
 | |
|         with pytest.raises(ValueError):
 | |
|             require_gpu()
 | |
|     set_current_ops(current_ops)
 | |
| 
 | |
| 
 | |
| def test_require_cpu():
 | |
|     current_ops = get_current_ops()
 | |
|     require_cpu()
 | |
|     assert isinstance(get_current_ops(), NumpyOps)
 | |
|     try:
 | |
|         import cupy  # noqa: F401
 | |
| 
 | |
|         require_gpu()
 | |
|         assert isinstance(get_current_ops(), CupyOps)
 | |
|     except ImportError:
 | |
|         pass
 | |
|     require_cpu()
 | |
|     assert isinstance(get_current_ops(), NumpyOps)
 | |
|     set_current_ops(current_ops)
 | |
| 
 | |
| 
 | |
| def test_ascii_filenames():
 | |
|     """Test that all filenames in the project are ASCII.
 | |
|     See: https://twitter.com/_inesmontani/status/1177941471632211968
 | |
|     """
 | |
|     root = Path(__file__).parent.parent
 | |
|     for path in root.glob("**/*"):
 | |
|         assert all(ord(c) < 128 for c in path.name), path.name
 | |
| 
 | |
| 
 | |
| def test_load_model_blank_shortcut():
 | |
|     """Test that using a model name like "blank:en" works as a shortcut for
 | |
|     spacy.blank("en").
 | |
|     """
 | |
|     nlp = util.load_model("blank:en")
 | |
|     assert nlp.lang == "en"
 | |
|     assert nlp.pipeline == []
 | |
| 
 | |
|     # ImportError for loading an unsupported language
 | |
|     with pytest.raises(ImportError):
 | |
|         util.load_model("blank:zxx")
 | |
| 
 | |
|     # ImportError for requesting an invalid language code that isn't registered
 | |
|     with pytest.raises(ImportError):
 | |
|         util.load_model("blank:fjsfijsdof")
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "version,constraint,compatible",
 | |
|     [
 | |
|         (spacy_version, spacy_version, True),
 | |
|         (spacy_version, f">={spacy_version}", True),
 | |
|         ("3.0.0", "2.0.0", False),
 | |
|         ("3.2.1", ">=2.0.0", True),
 | |
|         ("2.2.10a1", ">=1.0.0,<2.1.1", False),
 | |
|         ("3.0.0.dev3", ">=1.2.3,<4.5.6", True),
 | |
|         ("n/a", ">=1.2.3,<4.5.6", None),
 | |
|         ("1.2.3", "n/a", None),
 | |
|         ("n/a", "n/a", None),
 | |
|     ],
 | |
| )
 | |
| def test_is_compatible_version(version, constraint, compatible):
 | |
|     assert util.is_compatible_version(version, constraint) is compatible
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "constraint,expected",
 | |
|     [
 | |
|         ("3.0.0", False),
 | |
|         ("==3.0.0", False),
 | |
|         (">=2.3.0", True),
 | |
|         (">2.0.0", True),
 | |
|         ("<=2.0.0", True),
 | |
|         (">2.0.0,<3.0.0", False),
 | |
|         (">=2.0.0,<3.0.0", False),
 | |
|         ("!=1.1,>=1.0,~=1.0", True),
 | |
|         ("n/a", None),
 | |
|     ],
 | |
| )
 | |
| def test_is_unconstrained_version(constraint, expected):
 | |
|     assert util.is_unconstrained_version(constraint) is expected
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "a1,a2,b1,b2,is_match",
 | |
|     [
 | |
|         ("3.0.0", "3.0", "3.0.1", "3.0", True),
 | |
|         ("3.1.0", "3.1", "3.2.1", "3.2", False),
 | |
|         ("xxx", None, "1.2.3.dev0", "1.2", False),
 | |
|     ],
 | |
| )
 | |
| def test_minor_version(a1, a2, b1, b2, is_match):
 | |
|     assert util.get_minor_version(a1) == a2
 | |
|     assert util.get_minor_version(b1) == b2
 | |
|     assert util.is_minor_version_match(a1, b1) is is_match
 | |
|     assert util.is_minor_version_match(a2, b2) is is_match
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "dot_notation,expected",
 | |
|     [
 | |
|         (
 | |
|             {"token.pos": True, "token._.xyz": True},
 | |
|             {"token": {"pos": True, "_": {"xyz": True}}},
 | |
|         ),
 | |
|         (
 | |
|             {"training.batch_size": 128, "training.optimizer.learn_rate": 0.01},
 | |
|             {"training": {"batch_size": 128, "optimizer": {"learn_rate": 0.01}}},
 | |
|         ),
 | |
|     ],
 | |
| )
 | |
| def test_dot_to_dict(dot_notation, expected):
 | |
|     result = util.dot_to_dict(dot_notation)
 | |
|     assert result == expected
 | |
|     assert util.dict_to_dot(result) == dot_notation
 | |
| 
 | |
| 
 | |
| def test_set_dot_to_object():
 | |
|     config = {"foo": {"bar": 1, "baz": {"x": "y"}}, "test": {"a": {"b": "c"}}}
 | |
|     with pytest.raises(KeyError):
 | |
|         util.set_dot_to_object(config, "foo.bar.baz", 100)
 | |
|     with pytest.raises(KeyError):
 | |
|         util.set_dot_to_object(config, "hello.world", 100)
 | |
|     with pytest.raises(KeyError):
 | |
|         util.set_dot_to_object(config, "test.a.b.c", 100)
 | |
|     util.set_dot_to_object(config, "foo.bar", 100)
 | |
|     assert config["foo"]["bar"] == 100
 | |
|     util.set_dot_to_object(config, "foo.baz.x", {"hello": "world"})
 | |
|     assert config["foo"]["baz"]["x"]["hello"] == "world"
 | |
|     assert config["test"]["a"]["b"] == "c"
 | |
|     util.set_dot_to_object(config, "foo", 123)
 | |
|     assert config["foo"] == 123
 | |
|     util.set_dot_to_object(config, "test", "hello")
 | |
|     assert dict(config) == {"foo": 123, "test": "hello"}
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "doc_sizes, expected_batches",
 | |
|     [
 | |
|         ([400, 400, 199], [3]),
 | |
|         ([400, 400, 199, 3], [4]),
 | |
|         ([400, 400, 199, 3, 200], [3, 2]),
 | |
|         ([400, 400, 199, 3, 1], [5]),
 | |
|         ([400, 400, 199, 3, 1, 1500], [5]),  # 1500 will be discarded
 | |
|         ([400, 400, 199, 3, 1, 200], [3, 3]),
 | |
|         ([400, 400, 199, 3, 1, 999], [3, 3]),
 | |
|         ([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
 | |
|         ([1, 2, 999], [3]),
 | |
|         ([1, 2, 999, 1], [4]),
 | |
|         ([1, 200, 999, 1], [2, 2]),
 | |
|         ([1, 999, 200, 1], [2, 2]),
 | |
|     ],
 | |
| )
 | |
| def test_util_minibatch(doc_sizes, expected_batches):
 | |
|     docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
 | |
|     tol = 0.2
 | |
|     batch_size = 1000
 | |
|     batches = list(
 | |
|         minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
 | |
|     )
 | |
|     assert [len(batch) for batch in batches] == expected_batches
 | |
| 
 | |
|     max_size = batch_size + batch_size * tol
 | |
|     for batch in batches:
 | |
|         assert sum([len(doc) for doc in batch]) < max_size
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize(
 | |
|     "doc_sizes, expected_batches",
 | |
|     [
 | |
|         ([400, 4000, 199], [1, 2]),
 | |
|         ([400, 400, 199, 3000, 200], [1, 4]),
 | |
|         ([400, 400, 199, 3, 1, 1500], [1, 5]),
 | |
|         ([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
 | |
|         ([1, 2, 9999], [1, 2]),
 | |
|         ([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
 | |
|     ],
 | |
| )
 | |
| def test_util_minibatch_oversize(doc_sizes, expected_batches):
 | |
|     """Test that oversized documents are returned in their own batch"""
 | |
|     docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
 | |
|     tol = 0.2
 | |
|     batch_size = 1000
 | |
|     batches = list(
 | |
|         minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
 | |
|     )
 | |
|     assert [len(batch) for batch in batches] == expected_batches
 | |
| 
 | |
| 
 | |
| def test_util_dot_section():
 | |
|     cfg_string = """
 | |
|     [nlp]
 | |
|     lang = "en"
 | |
|     pipeline = ["textcat"]
 | |
| 
 | |
|     [components]
 | |
| 
 | |
|     [components.textcat]
 | |
|     factory = "textcat"
 | |
| 
 | |
|     [components.textcat.model]
 | |
|     @architectures = "spacy.TextCatBOW.v2"
 | |
|     exclusive_classes = true
 | |
|     ngram_size = 1
 | |
|     no_output_layer = false
 | |
|     """
 | |
|     nlp_config = Config().from_str(cfg_string)
 | |
|     en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
 | |
|     default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
 | |
|     default_config["nlp"]["lang"] = "nl"
 | |
|     nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
 | |
|     # Test that creation went OK
 | |
|     assert isinstance(en_nlp, English)
 | |
|     assert isinstance(nl_nlp, Dutch)
 | |
|     assert nl_nlp.pipe_names == []
 | |
|     assert en_nlp.pipe_names == ["textcat"]
 | |
|     # not exclusive_classes
 | |
|     assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
 | |
|     # Test that default values got overwritten
 | |
|     assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
 | |
|     assert nl_nlp.config["nlp"]["pipeline"] == []  # default value []
 | |
|     # Test proper functioning of 'dot_to_object'
 | |
|     with pytest.raises(KeyError):
 | |
|         dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
 | |
|     with pytest.raises(KeyError):
 | |
|         dot_to_object(en_nlp.config, "nlp.unknownattribute")
 | |
|     T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
 | |
|     assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
 | |
| 
 | |
| 
 | |
| def test_simple_frozen_list():
 | |
|     t = SimpleFrozenList(["foo", "bar"])
 | |
|     assert t == ["foo", "bar"]
 | |
|     assert t.index("bar") == 1  # okay method
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         t.append("baz")
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         t.sort()
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         t.extend(["baz"])
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         t.pop()
 | |
|     t = SimpleFrozenList(["foo", "bar"], error="Error!")
 | |
|     with pytest.raises(NotImplementedError):
 | |
|         t.append("baz")
 | |
| 
 | |
| 
 | |
| def test_resolve_dot_names():
 | |
|     config = {
 | |
|         "training": {"optimizer": {"@optimizers": "Adam.v1"}},
 | |
|         "foo": {"bar": "training.optimizer", "baz": "training.xyz"},
 | |
|     }
 | |
|     result = util.resolve_dot_names(config, ["training.optimizer"])
 | |
|     assert isinstance(result[0], Optimizer)
 | |
|     with pytest.raises(ConfigValidationError) as e:
 | |
|         util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
 | |
|     errors = e.value.errors
 | |
|     assert len(errors) == 1
 | |
|     assert errors[0]["loc"] == ["training", "xyz"]
 | |
| 
 | |
| 
 | |
| def test_import_code():
 | |
|     code_str = """
 | |
| from spacy import Language
 | |
| 
 | |
| class DummyComponent:
 | |
|     def __init__(self, vocab, name):
 | |
|         pass
 | |
| 
 | |
|     def initialize(self, get_examples, *, nlp, dummy_param: int):
 | |
|         pass
 | |
| 
 | |
| @Language.factory(
 | |
|     "dummy_component",
 | |
| )
 | |
| def make_dummy_component(
 | |
|     nlp: Language, name: str
 | |
| ):
 | |
|     return DummyComponent(nlp.vocab, name)
 | |
| """
 | |
| 
 | |
|     with make_tempdir() as temp_dir:
 | |
|         code_path = os.path.join(temp_dir, "code.py")
 | |
|         with open(code_path, "w") as fileh:
 | |
|             fileh.write(code_str)
 | |
| 
 | |
|         import_file("python_code", code_path)
 | |
|         config = {"initialize": {"components": {"dummy_component": {"dummy_param": 1}}}}
 | |
|         nlp = English.from_config(config)
 | |
|         nlp.add_pipe("dummy_component")
 | |
|         nlp.initialize()
 | |
| 
 | |
| 
 | |
| def test_to_ternary_int():
 | |
|     assert to_ternary_int(True) == 1
 | |
|     assert to_ternary_int(None) == 0
 | |
|     assert to_ternary_int(False) == -1
 | |
|     assert to_ternary_int(1) == 1
 | |
|     assert to_ternary_int(1.0) == 1
 | |
|     assert to_ternary_int(0) == 0
 | |
|     assert to_ternary_int(0.0) == 0
 | |
|     assert to_ternary_int(-1) == -1
 | |
|     assert to_ternary_int(5) == -1
 | |
|     assert to_ternary_int(-10) == -1
 | |
|     assert to_ternary_int("string") == -1
 | |
|     assert to_ternary_int([0, "string"]) == -1
 |