💫 Industrial-strength Natural Language Processing (NLP) in Python
Go to file
2015-10-24 21:51:01 +03:00
appveyor@9f94a16f0e Switching to appveyor toolkit 2015-10-24 20:29:01 +03:00
bin * Load/dump strings with a json file, instead of the hacky strings file we were using. 2015-10-22 21:13:03 +11:00
contributors Add contributor. 2015-10-07 17:55:46 -07:00
corpora/en * Add wordnet 2015-09-21 19:06:48 +10:00
examples * Add simple deep feed-forward neural network text classification example. 2015-10-19 23:44:49 +11:00
lang_data * Fix non-breaking space in specials.json 2015-10-19 12:46:11 +11:00
spacy * Fix exception for python 2 2015-10-23 01:56:13 +02:00
tests * Load/dump strings with a json file, instead of the hacky strings file we were using. 2015-10-22 21:13:03 +11:00
website * Pedantic edits to website/create_code_samples. Make it use plac for interface, remove unnecessary regex, ensure unicode is handled correctly under Python 2. 2015-10-19 12:56:00 +11:00
.appveyor.yml Added submodule update 2015-10-24 21:51:01 +03:00
.gitignore Added Windows file to .gitignore 2015-10-13 10:58:30 +03:00
.gitmodules Switching to appveyor toolkit 2015-10-24 20:29:01 +03:00
.travis.yml Push 2015-10-20 23:28:37 +03:00
bootstrap_python_env.sh * Add bootstrap script 2015-03-16 14:01:36 -04:00
fabfile.py * Fix twine publishing in fabfile 2015-10-22 21:13:37 +11:00
LICENSE.txt * Change from AGPL to MIT 2015-09-28 07:37:12 +10:00
MANIFEST.in * Add manifest file 2015-01-30 16:49:02 +11:00
README-MSVC.txt Appveyor clean build 2015-10-12 23:01:37 +03:00
README.md Update README.md 2015-10-16 00:01:03 +03:00
requirements.txt add custom download tool (uget), replace wget with uget 2015-10-18 12:35:04 +02:00
setup.py * Increment version 2015-10-23 02:04:48 +02:00
wordnet_license.txt * Add WordNet license file 2015-02-01 16:11:53 +11:00

spaCy: Industrial-strength NLP

spaCy is a library for advanced natural language processing in Python and Cython.

Documentation and details: http://spacy.io/

spaCy is built on the very latest research, but it isn't researchware. It was designed from day 1 to be used in real products. It's commercial open-source software, released under the MIT license.

Features

  • Labelled dependency parsing (91.8% accuracy on OntoNotes 5)
  • Named entity recognition (82.6% accuracy on OntoNotes 5)
  • Part-of-speech tagging (97.1% accuracy on OntoNotes 5)
  • Easy to use word vectors
  • All strings mapped to integer IDs
  • Export to numpy data arrays
  • Alignment maintained to original string, ensuring easy mark up calculation
  • Range of easy-to-use orthographic features.
  • No pre-processing required. spaCy takes raw text as input, warts and newlines and all.

Top Peformance

  • Fastest in the world: <50ms per document. No faster system has ever been announced.
  • Accuracy within 1% of the current state of the art on all tasks performed (parsing, named entity recognition, part-of-speech tagging). The only more accurate systems are an order of magnitude slower or more.

Supports

  • CPython 2.7
  • CPython 3.4
  • OSX
  • Linux
  • Cygwin

Want to support:

  • Visual Studio

Difficult to support:

  • PyPy 2.7
  • PyPy 3.4