mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
657af5f91f
* 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
576 lines
23 KiB
Cython
576 lines
23 KiB
Cython
# cython: profile=True
|
|
from libc.string cimport memcpy
|
|
|
|
import srsly
|
|
from thinc.api import get_array_module, get_current_ops
|
|
import functools
|
|
|
|
from .lexeme cimport EMPTY_LEXEME, OOV_RANK
|
|
from .lexeme cimport Lexeme
|
|
from .typedefs cimport attr_t
|
|
from .tokens.token cimport Token
|
|
from .attrs cimport LANG, ORTH
|
|
|
|
from .compat import copy_reg
|
|
from .errors import Errors
|
|
from .attrs import intify_attrs, NORM, IS_STOP
|
|
from .vectors import Vectors
|
|
from .util import registry
|
|
from .lookups import Lookups
|
|
from . import util
|
|
from .lang.norm_exceptions import BASE_NORMS
|
|
from .lang.lex_attrs import LEX_ATTRS, is_stop, get_lang
|
|
|
|
|
|
def create_vocab(lang, defaults, vectors_name=None):
|
|
# If the spacy-lookups-data package is installed, we pre-populate the lookups
|
|
# with lexeme data, if available
|
|
lex_attrs = {**LEX_ATTRS, **defaults.lex_attr_getters}
|
|
# This is messy, but it's the minimal working fix to Issue #639.
|
|
lex_attrs[IS_STOP] = functools.partial(is_stop, stops=defaults.stop_words)
|
|
# Ensure that getter can be pickled
|
|
lex_attrs[LANG] = functools.partial(get_lang, lang=lang)
|
|
lex_attrs[NORM] = util.add_lookups(
|
|
lex_attrs.get(NORM, LEX_ATTRS[NORM]),
|
|
BASE_NORMS,
|
|
)
|
|
return Vocab(
|
|
lex_attr_getters=lex_attrs,
|
|
writing_system=defaults.writing_system,
|
|
get_noun_chunks=defaults.syntax_iterators.get("noun_chunks"),
|
|
vectors_name=vectors_name,
|
|
)
|
|
|
|
|
|
cdef class Vocab:
|
|
"""A look-up table that allows you to access `Lexeme` objects. The `Vocab`
|
|
instance also provides access to the `StringStore`, and owns underlying
|
|
C-data that is shared between `Doc` objects.
|
|
|
|
DOCS: https://spacy.io/api/vocab
|
|
"""
|
|
def __init__(self, lex_attr_getters=None, strings=tuple(), lookups=None,
|
|
oov_prob=-20., vectors_name=None, writing_system={},
|
|
get_noun_chunks=None, **deprecated_kwargs):
|
|
"""Create the vocabulary.
|
|
|
|
lex_attr_getters (dict): A dictionary mapping attribute IDs to
|
|
functions to compute them. Defaults to `None`.
|
|
strings (StringStore): StringStore that maps strings to integers, and
|
|
vice versa.
|
|
lookups (Lookups): Container for large lookup tables and dictionaries.
|
|
oov_prob (float): Default OOV probability.
|
|
vectors_name (unicode): Optional name to identify the vectors table.
|
|
get_noun_chunks (Optional[Callable[[Union[Doc, Span], Iterator[Tuple[int, int, int]]]]]):
|
|
A function that yields base noun phrases used for Doc.noun_chunks.
|
|
"""
|
|
lex_attr_getters = lex_attr_getters if lex_attr_getters is not None else {}
|
|
if lookups in (None, True, False):
|
|
lookups = Lookups()
|
|
self.cfg = {'oov_prob': oov_prob}
|
|
self.mem = Pool()
|
|
self._by_orth = PreshMap()
|
|
self.strings = StringStore()
|
|
self.length = 0
|
|
if strings:
|
|
for string in strings:
|
|
_ = self[string]
|
|
self.lex_attr_getters = lex_attr_getters
|
|
self.morphology = Morphology(self.strings)
|
|
self.vectors = Vectors(name=vectors_name)
|
|
self.lookups = lookups
|
|
self.writing_system = writing_system
|
|
self.get_noun_chunks = get_noun_chunks
|
|
|
|
@property
|
|
def lang(self):
|
|
langfunc = None
|
|
if self.lex_attr_getters:
|
|
langfunc = self.lex_attr_getters.get(LANG, None)
|
|
return langfunc("_") if langfunc else ""
|
|
|
|
def __len__(self):
|
|
"""The current number of lexemes stored.
|
|
|
|
RETURNS (int): The current number of lexemes stored.
|
|
"""
|
|
return self.length
|
|
|
|
def add_flag(self, flag_getter, int flag_id=-1):
|
|
"""Set a new boolean flag to words in the vocabulary.
|
|
|
|
The flag_getter function will be called over the words currently in the
|
|
vocab, and then applied to new words as they occur. You'll then be able
|
|
to access the flag value on each token using token.check_flag(flag_id).
|
|
See also: `Lexeme.set_flag`, `Lexeme.check_flag`, `Token.set_flag`,
|
|
`Token.check_flag`.
|
|
|
|
flag_getter (callable): A function `f(unicode) -> bool`, to get the
|
|
flag value.
|
|
flag_id (int): An integer between 1 and 63 (inclusive), specifying
|
|
the bit at which the flag will be stored. If -1, the lowest
|
|
available bit will be chosen.
|
|
RETURNS (int): The integer ID by which the flag value can be checked.
|
|
|
|
DOCS: https://spacy.io/api/vocab#add_flag
|
|
"""
|
|
if flag_id == -1:
|
|
for bit in range(1, 64):
|
|
if bit not in self.lex_attr_getters:
|
|
flag_id = bit
|
|
break
|
|
else:
|
|
raise ValueError(Errors.E062)
|
|
elif flag_id >= 64 or flag_id < 1:
|
|
raise ValueError(Errors.E063.format(value=flag_id))
|
|
for lex in self:
|
|
lex.set_flag(flag_id, flag_getter(lex.orth_))
|
|
self.lex_attr_getters[flag_id] = flag_getter
|
|
return flag_id
|
|
|
|
cdef const LexemeC* get(self, Pool mem, unicode string) except NULL:
|
|
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
|
`Lexeme` if necessary using memory acquired from the given pool. If the
|
|
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
|
"""
|
|
if string == "":
|
|
return &EMPTY_LEXEME
|
|
cdef LexemeC* lex
|
|
cdef hash_t key = self.strings[string]
|
|
lex = <LexemeC*>self._by_orth.get(key)
|
|
cdef size_t addr
|
|
if lex != NULL:
|
|
assert lex.orth in self.strings
|
|
if lex.orth != key:
|
|
raise KeyError(Errors.E064.format(string=lex.orth,
|
|
orth=key, orth_id=string))
|
|
return lex
|
|
else:
|
|
return self._new_lexeme(mem, string)
|
|
|
|
cdef const LexemeC* get_by_orth(self, Pool mem, attr_t orth) except NULL:
|
|
"""Get a pointer to a `LexemeC` from the lexicon, creating a new
|
|
`Lexeme` if necessary using memory acquired from the given pool. If the
|
|
pool is the lexicon's own memory, the lexeme is saved in the lexicon.
|
|
"""
|
|
if orth == 0:
|
|
return &EMPTY_LEXEME
|
|
cdef LexemeC* lex
|
|
lex = <LexemeC*>self._by_orth.get(orth)
|
|
if lex != NULL:
|
|
return lex
|
|
else:
|
|
return self._new_lexeme(mem, self.strings[orth])
|
|
|
|
cdef const LexemeC* _new_lexeme(self, Pool mem, unicode string) except NULL:
|
|
# I think this heuristic is bad, and the Vocab should always
|
|
# own the lexemes. It avoids weird bugs this way, as it's how the thing
|
|
# was originally supposed to work. The best solution to the growing
|
|
# memory use is to periodically reset the vocab, which is an action
|
|
# that should be up to the user to do (so we don't need to keep track
|
|
# of the doc ownership).
|
|
# TODO: Change the C API so that the mem isn't passed in here.
|
|
mem = self.mem
|
|
#if len(string) < 3 or self.length < 10000:
|
|
# mem = self.mem
|
|
cdef bint is_oov = mem is not self.mem
|
|
lex = <LexemeC*>mem.alloc(1, sizeof(LexemeC))
|
|
lex.orth = self.strings.add(string)
|
|
lex.length = len(string)
|
|
if self.vectors is not None:
|
|
lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK)
|
|
else:
|
|
lex.id = OOV_RANK
|
|
if self.lex_attr_getters is not None:
|
|
for attr, func in self.lex_attr_getters.items():
|
|
value = func(string)
|
|
if isinstance(value, unicode):
|
|
value = self.strings.add(value)
|
|
if value is not None:
|
|
Lexeme.set_struct_attr(lex, attr, value)
|
|
if not is_oov:
|
|
self._add_lex_to_vocab(lex.orth, lex)
|
|
if lex == NULL:
|
|
raise ValueError(Errors.E085.format(string=string))
|
|
return lex
|
|
|
|
cdef int _add_lex_to_vocab(self, hash_t key, const LexemeC* lex) except -1:
|
|
self._by_orth.set(lex.orth, <void*>lex)
|
|
self.length += 1
|
|
|
|
def __contains__(self, key):
|
|
"""Check whether the string or int key has an entry in the vocabulary.
|
|
|
|
string (unicode): The ID string.
|
|
RETURNS (bool) Whether the string has an entry in the vocabulary.
|
|
|
|
DOCS: https://spacy.io/api/vocab#contains
|
|
"""
|
|
cdef hash_t int_key
|
|
if isinstance(key, bytes):
|
|
int_key = self.strings[key.decode("utf8")]
|
|
elif isinstance(key, unicode):
|
|
int_key = self.strings[key]
|
|
else:
|
|
int_key = key
|
|
lex = self._by_orth.get(int_key)
|
|
return lex is not NULL
|
|
|
|
def __iter__(self):
|
|
"""Iterate over the lexemes in the vocabulary.
|
|
|
|
YIELDS (Lexeme): An entry in the vocabulary.
|
|
|
|
DOCS: https://spacy.io/api/vocab#iter
|
|
"""
|
|
cdef attr_t key
|
|
cdef size_t addr
|
|
for key, addr in self._by_orth.items():
|
|
lex = Lexeme(self, key)
|
|
yield lex
|
|
|
|
def __getitem__(self, id_or_string):
|
|
"""Retrieve a lexeme, given an int ID or a unicode string. If a
|
|
previously unseen unicode string is given, a new lexeme is created and
|
|
stored.
|
|
|
|
id_or_string (int or unicode): The integer ID of a word, or its unicode
|
|
string. If `int >= Lexicon.size`, `IndexError` is raised. If
|
|
`id_or_string` is neither an int nor a unicode string, `ValueError`
|
|
is raised.
|
|
RETURNS (Lexeme): The lexeme indicated by the given ID.
|
|
|
|
EXAMPLE:
|
|
>>> apple = nlp.vocab.strings["apple"]
|
|
>>> assert nlp.vocab[apple] == nlp.vocab[u"apple"]
|
|
|
|
DOCS: https://spacy.io/api/vocab#getitem
|
|
"""
|
|
cdef attr_t orth
|
|
if isinstance(id_or_string, unicode):
|
|
orth = self.strings.add(id_or_string)
|
|
else:
|
|
orth = id_or_string
|
|
return Lexeme(self, orth)
|
|
|
|
cdef const TokenC* make_fused_token(self, substrings) except NULL:
|
|
cdef int i
|
|
tokens = <TokenC*>self.mem.alloc(len(substrings) + 1, sizeof(TokenC))
|
|
for i, props in enumerate(substrings):
|
|
props = intify_attrs(props, strings_map=self.strings,
|
|
_do_deprecated=True)
|
|
token = &tokens[i]
|
|
# Set the special tokens up to have arbitrary attributes
|
|
lex = <LexemeC*>self.get_by_orth(self.mem, props[ORTH])
|
|
token.lex = lex
|
|
for attr_id, value in props.items():
|
|
Token.set_struct_attr(token, attr_id, value)
|
|
# NORM is the only one that overlaps between the two
|
|
# (which is maybe not great?)
|
|
if attr_id != NORM:
|
|
Lexeme.set_struct_attr(lex, attr_id, value)
|
|
return tokens
|
|
|
|
@property
|
|
def vectors_length(self):
|
|
return self.vectors.data.shape[1]
|
|
|
|
def reset_vectors(self, *, width=None, shape=None):
|
|
"""Drop the current vector table. Because all vectors must be the same
|
|
width, you have to call this to change the size of the vectors.
|
|
"""
|
|
if width is not None and shape is not None:
|
|
raise ValueError(Errors.E065.format(width=width, shape=shape))
|
|
elif shape is not None:
|
|
self.vectors = Vectors(shape=shape)
|
|
else:
|
|
width = width if width is not None else self.vectors.data.shape[1]
|
|
self.vectors = Vectors(shape=(self.vectors.shape[0], width))
|
|
|
|
def prune_vectors(self, nr_row, batch_size=1024):
|
|
"""Reduce the current vector table to `nr_row` unique entries. Words
|
|
mapped to the discarded vectors will be remapped to the closest vector
|
|
among those remaining.
|
|
|
|
For example, suppose the original table had vectors for the words:
|
|
['sat', 'cat', 'feline', 'reclined']. If we prune the vector table to
|
|
two rows, we would discard the vectors for 'feline' and 'reclined'.
|
|
These words would then be remapped to the closest remaining vector
|
|
-- so "feline" would have the same vector as "cat", and "reclined"
|
|
would have the same vector as "sat".
|
|
|
|
The similarities are judged by cosine. The original vectors may
|
|
be large, so the cosines are calculated in minibatches, to reduce
|
|
memory usage.
|
|
|
|
nr_row (int): The number of rows to keep in the vector table.
|
|
batch_size (int): Batch of vectors for calculating the similarities.
|
|
Larger batch sizes might be faster, while temporarily requiring
|
|
more memory.
|
|
RETURNS (dict): A dictionary keyed by removed words mapped to
|
|
`(string, score)` tuples, where `string` is the entry the removed
|
|
word was mapped to, and `score` the similarity score between the
|
|
two words.
|
|
|
|
DOCS: https://spacy.io/api/vocab#prune_vectors
|
|
"""
|
|
ops = get_current_ops()
|
|
xp = get_array_module(self.vectors.data)
|
|
# Make sure all vectors are in the vocab
|
|
for orth in self.vectors:
|
|
self[orth]
|
|
# Make prob negative so it sorts by rank ascending
|
|
# (key2row contains the rank)
|
|
priority = [(-lex.prob, self.vectors.key2row[lex.orth], lex.orth)
|
|
for lex in self if lex.orth in self.vectors.key2row]
|
|
priority.sort()
|
|
indices = xp.asarray([i for (prob, i, key) in priority], dtype="uint64")
|
|
keys = xp.asarray([key for (prob, i, key) in priority], dtype="uint64")
|
|
keep = xp.ascontiguousarray(self.vectors.data[indices[:nr_row]])
|
|
toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]])
|
|
self.vectors = Vectors(data=keep, keys=keys[:nr_row], name=self.vectors.name)
|
|
syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size)
|
|
syn_keys = ops.to_numpy(syn_keys)
|
|
remap = {}
|
|
for i, key in enumerate(ops.to_numpy(keys[nr_row:])):
|
|
self.vectors.add(key, row=syn_rows[i][0])
|
|
word = self.strings[key]
|
|
synonym = self.strings[syn_keys[i][0]]
|
|
score = scores[i][0]
|
|
remap[word] = (synonym, score)
|
|
return remap
|
|
|
|
def get_vector(self, orth, minn=None, maxn=None):
|
|
"""Retrieve a vector for a word in the vocabulary. Words can be looked
|
|
up by string or int ID. If no vectors data is loaded, ValueError is
|
|
raised.
|
|
|
|
If `minn` is defined, then the resulting vector uses Fasttext's
|
|
subword features by average over ngrams of `orth`.
|
|
|
|
orth (int / unicode): The hash value of a word, or its unicode string.
|
|
minn (int): Minimum n-gram length used for Fasttext's ngram computation.
|
|
Defaults to the length of `orth`.
|
|
maxn (int): Maximum n-gram length used for Fasttext's ngram computation.
|
|
Defaults to the length of `orth`.
|
|
RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size
|
|
and shape determined by the `vocab.vectors` instance. Usually, a
|
|
numpy ndarray of shape (300,) and dtype float32.
|
|
|
|
DOCS: https://spacy.io/api/vocab#get_vector
|
|
"""
|
|
if isinstance(orth, str):
|
|
orth = self.strings.add(orth)
|
|
word = self[orth].orth_
|
|
if orth in self.vectors.key2row:
|
|
return self.vectors[orth]
|
|
xp = get_array_module(self.vectors.data)
|
|
vectors = xp.zeros((self.vectors_length,), dtype="f")
|
|
if minn is None:
|
|
return vectors
|
|
# Fasttext's ngram computation taken from
|
|
# https://github.com/facebookresearch/fastText
|
|
# Assign default ngram limit to maxn which is the length of the word.
|
|
if maxn is None:
|
|
maxn = len(word)
|
|
ngrams_size = 0;
|
|
for i in range(len(word)):
|
|
ngram = ""
|
|
if (word[i] and 0xC0) == 0x80:
|
|
continue
|
|
n = 1
|
|
j = i
|
|
while (j < len(word) and n <= maxn):
|
|
if n > maxn:
|
|
break
|
|
ngram += word[j]
|
|
j = j + 1
|
|
while (j < len(word) and (word[j] and 0xC0) == 0x80):
|
|
ngram += word[j]
|
|
j = j + 1
|
|
if (n >= minn and not (n == 1 and (i == 0 or j == len(word)))):
|
|
if self.strings[ngram] in self.vectors.key2row:
|
|
vectors = xp.add(self.vectors[self.strings[ngram]], vectors)
|
|
ngrams_size += 1
|
|
n = n + 1
|
|
if ngrams_size > 0:
|
|
vectors = vectors * (1.0/ngrams_size)
|
|
return vectors
|
|
|
|
def set_vector(self, orth, vector):
|
|
"""Set a vector for a word in the vocabulary. Words can be referenced
|
|
by string or int ID.
|
|
|
|
orth (int / unicode): The word.
|
|
vector (numpy.ndarray or cupy.nadarry[ndim=1, dtype='float32']): The vector to set.
|
|
|
|
DOCS: https://spacy.io/api/vocab#set_vector
|
|
"""
|
|
if isinstance(orth, str):
|
|
orth = self.strings.add(orth)
|
|
if self.vectors.is_full and orth not in self.vectors:
|
|
new_rows = max(100, int(self.vectors.shape[0]*1.3))
|
|
if self.vectors.shape[1] == 0:
|
|
width = vector.size
|
|
else:
|
|
width = self.vectors.shape[1]
|
|
self.vectors.resize((new_rows, width))
|
|
lex = self[orth] # Add word to vocab if necessary
|
|
row = self.vectors.add(orth, vector=vector)
|
|
lex.rank = row
|
|
|
|
def has_vector(self, orth):
|
|
"""Check whether a word has a vector. Returns False if no vectors have
|
|
been loaded. Words can be looked up by string or int ID.
|
|
|
|
orth (int / unicode): The word.
|
|
RETURNS (bool): Whether the word has a vector.
|
|
|
|
DOCS: https://spacy.io/api/vocab#has_vector
|
|
"""
|
|
if isinstance(orth, str):
|
|
orth = self.strings.add(orth)
|
|
return orth in self.vectors
|
|
|
|
property lookups:
|
|
def __get__(self):
|
|
return self._lookups
|
|
|
|
def __set__(self, lookups):
|
|
self._lookups = lookups
|
|
if lookups.has_table("lexeme_norm"):
|
|
self.lex_attr_getters[NORM] = util.add_lookups(
|
|
self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]),
|
|
self.lookups.get_table("lexeme_norm"),
|
|
)
|
|
|
|
|
|
def to_disk(self, path, *, exclude=tuple()):
|
|
"""Save the current state to a directory.
|
|
|
|
path (unicode or Path): A path to a directory, which will be created if
|
|
it doesn't exist.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
|
|
DOCS: https://spacy.io/api/vocab#to_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
if not path.exists():
|
|
path.mkdir()
|
|
setters = ["strings", "vectors"]
|
|
if "strings" not in exclude:
|
|
self.strings.to_disk(path / "strings.json")
|
|
if "vectors" not in "exclude":
|
|
self.vectors.to_disk(path)
|
|
if "lookups" not in "exclude":
|
|
self.lookups.to_disk(path)
|
|
|
|
def from_disk(self, path, *, exclude=tuple()):
|
|
"""Loads state from a directory. Modifies the object in place and
|
|
returns it.
|
|
|
|
path (unicode or Path): A path to a directory.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (Vocab): The modified `Vocab` object.
|
|
|
|
DOCS: https://spacy.io/api/vocab#to_disk
|
|
"""
|
|
path = util.ensure_path(path)
|
|
getters = ["strings", "vectors"]
|
|
if "strings" not in exclude:
|
|
self.strings.from_disk(path / "strings.json") # TODO: add exclude?
|
|
if "vectors" not in exclude:
|
|
if self.vectors is not None:
|
|
self.vectors.from_disk(path, exclude=["strings"])
|
|
if "lookups" not in exclude:
|
|
self.lookups.from_disk(path)
|
|
if "lexeme_norm" in self.lookups:
|
|
self.lex_attr_getters[NORM] = util.add_lookups(
|
|
self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
|
|
)
|
|
self.length = 0
|
|
self._by_orth = PreshMap()
|
|
return self
|
|
|
|
def to_bytes(self, *, exclude=tuple()):
|
|
"""Serialize the current state to a binary string.
|
|
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (bytes): The serialized form of the `Vocab` object.
|
|
|
|
DOCS: https://spacy.io/api/vocab#to_bytes
|
|
"""
|
|
def deserialize_vectors():
|
|
if self.vectors is None:
|
|
return None
|
|
else:
|
|
return self.vectors.to_bytes()
|
|
|
|
getters = {
|
|
"strings": lambda: self.strings.to_bytes(),
|
|
"vectors": deserialize_vectors,
|
|
"lookups": lambda: self.lookups.to_bytes(),
|
|
}
|
|
return util.to_bytes(getters, exclude)
|
|
|
|
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
|
"""Load state from a binary string.
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
exclude (Iterable[str]): String names of serialization fields to exclude.
|
|
RETURNS (Vocab): The `Vocab` object.
|
|
|
|
DOCS: https://spacy.io/api/vocab#from_bytes
|
|
"""
|
|
def serialize_vectors(b):
|
|
if self.vectors is None:
|
|
return None
|
|
else:
|
|
return self.vectors.from_bytes(b)
|
|
|
|
setters = {
|
|
"strings": lambda b: self.strings.from_bytes(b),
|
|
"vectors": lambda b: serialize_vectors(b),
|
|
"lookups": lambda b: self.lookups.from_bytes(b),
|
|
}
|
|
util.from_bytes(bytes_data, setters, exclude)
|
|
if "lexeme_norm" in self.lookups:
|
|
self.lex_attr_getters[NORM] = util.add_lookups(
|
|
self.lex_attr_getters.get(NORM, LEX_ATTRS[NORM]), self.lookups.get_table("lexeme_norm")
|
|
)
|
|
self.length = 0
|
|
self._by_orth = PreshMap()
|
|
return self
|
|
|
|
def _reset_cache(self, keys, strings):
|
|
# I'm not sure this made sense. Disable it for now.
|
|
raise NotImplementedError
|
|
|
|
|
|
def pickle_vocab(vocab):
|
|
sstore = vocab.strings
|
|
vectors = vocab.vectors
|
|
morph = vocab.morphology
|
|
data_dir = vocab.data_dir
|
|
lex_attr_getters = srsly.pickle_dumps(vocab.lex_attr_getters)
|
|
lookups = vocab.lookups
|
|
get_noun_chunks = vocab.get_noun_chunks
|
|
return (unpickle_vocab,
|
|
(sstore, vectors, morph, data_dir, lex_attr_getters, lookups, get_noun_chunks))
|
|
|
|
|
|
def unpickle_vocab(sstore, vectors, morphology, data_dir,
|
|
lex_attr_getters, lookups, get_noun_chunks):
|
|
cdef Vocab vocab = Vocab()
|
|
vocab.vectors = vectors
|
|
vocab.strings = sstore
|
|
vocab.morphology = morphology
|
|
vocab.data_dir = data_dir
|
|
vocab.lex_attr_getters = srsly.pickle_loads(lex_attr_getters)
|
|
vocab.lookups = lookups
|
|
vocab.get_noun_chunks = get_noun_chunks
|
|
return vocab
|
|
|
|
|
|
copy_reg.pickle(Vocab, pickle_vocab, unpickle_vocab)
|