spaCy/spacy/pipeline/coref.py
2022-05-25 19:11:48 +09:00

331 lines
11 KiB
Python

from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
import warnings
from thinc.types import Floats2d, Floats3d, Ints2d
from thinc.api import Model, Config, Optimizer
from thinc.api import set_dropout_rate, to_categorical
from itertools import islice
from statistics import mean
from .trainable_pipe import TrainablePipe
from ..language import Language
from ..training import Example, validate_examples, validate_get_examples
from ..errors import Errors
from ..tokens import Doc
from ..vocab import Vocab
from ..ml.models.coref_util import (
create_gold_scores,
MentionClusters,
create_head_span_idxs,
get_clusters_from_doc,
get_predicted_clusters,
DEFAULT_CLUSTER_PREFIX,
doc2clusters,
)
from ..coref_scorer import Evaluator, get_cluster_info, lea
default_config = """
[model]
@architectures = "spacy.Coref.v1"
distance_embedding_size = 20
hidden_size = 1024
depth = 1
dropout = 0.3
antecedent_limit = 50
antecedent_batch_size = 512
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 2
"""
DEFAULT_COREF_MODEL = Config().from_str(default_config)["model"]
DEFAULT_CLUSTERS_PREFIX = "coref_clusters"
@Language.factory(
"coref",
assigns=["doc.spans"],
requires=["doc.spans"],
default_config={
"model": DEFAULT_COREF_MODEL,
"span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
},
default_score_weights={"coref_f": 1.0, "coref_p": None, "coref_r": None},
)
def make_coref(
nlp: Language,
name: str,
model,
span_cluster_prefix: str = "coref",
) -> "CoreferenceResolver":
"""Create a CoreferenceResolver component."""
return CoreferenceResolver(
nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix
)
class CoreferenceResolver(TrainablePipe):
"""Pipeline component for coreference resolution.
DOCS: https://spacy.io/api/coref (TODO)
"""
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "coref",
*,
span_mentions: str = "coref_mentions",
span_cluster_prefix: str,
) -> None:
"""Initialize a coreference resolution component.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
span_mentions (str): Key in doc.spans where the candidate coref mentions
are stored in.
span_cluster_prefix (str): Prefix for the key in doc.spans to store the
coref clusters in.
DOCS: https://spacy.io/api/coref#init (TODO)
"""
self.vocab = vocab
self.model = model
self.name = name
self.span_mentions = span_mentions
self.span_cluster_prefix = span_cluster_prefix
self._rehearsal_model = None
self.cfg: Dict[str, Any] = {}
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
"""Apply the pipeline's model to a batch of docs, without modifying them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/coref#predict (TODO)
"""
out = []
for doc in docs:
scores, idxs = self.model.predict([doc])
# idxs is a list of mentions (start / end idxs)
# each item in scores includes scores and a mapping from scores to mentions
ant_idxs = idxs
# TODO batching
xp = self.model.ops.xp
starts = xp.arange(0, len(doc))
ends = xp.arange(0, len(doc)) + 1
predicted = get_predicted_clusters(xp, starts, ends, ant_idxs, scores)
out.append(predicted)
return out
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
clusters: The span clusters, produced by CoreferenceResolver.predict.
DOCS: https://spacy.io/api/coref#set_annotations (TODO)
"""
docs = list(docs)
if len(docs) != len(clusters_by_doc):
raise ValueError(
"Found coref clusters incompatible with the "
"documents provided to the 'coref' component. "
"This is likely a bug in spaCy."
)
for doc, clusters in zip(docs, clusters_by_doc):
for ii, cluster in enumerate(clusters):
key = self.span_cluster_prefix + "_" + str(ii)
if key in doc.spans:
raise ValueError(
"Found coref clusters incompatible with the "
"documents provided to the 'coref' component. "
"This is likely a bug in spaCy."
)
doc.spans[key] = []
for mention in cluster:
doc.spans[key].append(doc[mention[0] : mention[1]])
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (thinc.api.Optimizer): The optimizer.
losses (Dict[str, float]): Optional record of the loss during training.
Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/coref#update (TODO)
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
validate_examples(examples, "CoreferenceResolver.update")
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
# Handle cases where there are no tokens in any docs.
return losses
set_dropout_rate(self.model, drop)
total_loss = 0
for eg in examples:
# TODO check this causes no issues (in practice it runs)
preds, backprop = self.model.begin_update([eg.predicted])
score_matrix, mention_idx = preds
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
total_loss += loss
# TODO check shape here
backprop((d_scores, mention_idx))
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += total_loss
return losses
def rehearse(self, examples, *, sgd=None, losses=None, **config):
raise NotImplementedError
def add_label(self, label: str) -> int:
"""Technically this method should be implemented from TrainablePipe,
but it is not relevant for the coref component.
"""
raise NotImplementedError(
Errors.E931.format(
parent="CoreferenceResolver", method="add_label", name=self.name
)
)
def get_loss(
self,
examples: Iterable[Example],
score_matrix: Floats2d,
mention_idx: Ints2d,
):
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://spacy.io/api/coref#get_loss (TODO)
"""
ops = self.model.ops
xp = ops.xp
# TODO if there is more than one example, give an error
# (or actually rework this to take multiple things)
example = list(examples)[0]
cidx = mention_idx
clusters = get_clusters_from_doc(example.reference)
span_idxs = create_head_span_idxs(ops, len(example.predicted))
gscores = create_gold_scores(span_idxs, clusters)
# TODO fix type here. This is bools but asarray2f wants ints.
gscores = ops.asarray2f(gscores)
# top_gscores = xp.take_along_axis(gscores, cidx, axis=1)
top_gscores = xp.take_along_axis(gscores, mention_idx, axis=1)
# now add the placeholder
gold_placeholder = ~top_gscores.any(axis=1).T
gold_placeholder = xp.expand_dims(gold_placeholder, 1)
top_gscores = xp.concatenate((gold_placeholder, top_gscores), 1)
# boolean to float
top_gscores = ops.asarray2f(top_gscores)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
log_marg = ops.softmax(score_matrix + ops.xp.log(top_gscores), axis=1)
log_norm = ops.softmax(score_matrix, axis=1)
grad = log_norm - log_marg
# gradients.append((grad, cidx))
loss = float((grad**2).sum())
return loss, grad
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
DOCS: https://spacy.io/api/coref#initialize (TODO)
"""
validate_get_examples(get_examples, "CoreferenceResolver.initialize")
X = []
Y = []
for ex in islice(get_examples(), 2):
X.append(ex.predicted)
Y.append(ex.reference)
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
def score(self, examples, **kwargs):
"""Score a batch of examples using LEA.
For details on how LEA works and why to use it see the paper:
Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric
Moosavi and Strube, 2016
https://api.semanticscholar.org/CorpusID:17606580
"""
evaluator = Evaluator(lea)
for ex in examples:
p_clusters = doc2clusters(ex.predicted, self.span_cluster_prefix)
g_clusters = doc2clusters(ex.reference, self.span_cluster_prefix)
cluster_info = get_cluster_info(p_clusters, g_clusters)
evaluator.update(cluster_info)
score = {
"coref_f": evaluator.get_f1(),
"coref_p": evaluator.get_precision(),
"coref_r": evaluator.get_recall(),
}
return score