mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
adc9745718
* Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
467 lines
15 KiB
Python
467 lines
15 KiB
Python
import pytest
|
||
import random
|
||
from spacy.matcher import Matcher
|
||
from spacy.attrs import IS_PUNCT, ORTH, LOWER
|
||
from spacy.symbols import POS, VERB
|
||
from spacy.vocab import Vocab
|
||
from spacy.language import Language
|
||
from spacy.lemmatizer import Lemmatizer
|
||
from spacy.lookups import Lookups
|
||
from spacy.tokens import Doc, Span
|
||
|
||
from ..util import get_doc, make_tempdir
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"patterns",
|
||
[
|
||
[[{"LOWER": "celtics"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]],
|
||
[[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "celtics"}]],
|
||
],
|
||
)
|
||
def test_issue118(en_tokenizer, patterns):
|
||
"""Test a bug that arose from having overlapping matches"""
|
||
text = (
|
||
"how many points did lebron james score against the boston celtics last night"
|
||
)
|
||
doc = en_tokenizer(text)
|
||
ORG = doc.vocab.strings["ORG"]
|
||
matcher = Matcher(doc.vocab)
|
||
matcher.add("BostonCeltics", patterns)
|
||
assert len(list(doc.ents)) == 0
|
||
matches = [(ORG, start, end) for _, start, end in matcher(doc)]
|
||
assert matches == [(ORG, 9, 11), (ORG, 10, 11)]
|
||
doc.ents = matches[:1]
|
||
ents = list(doc.ents)
|
||
assert len(ents) == 1
|
||
assert ents[0].label == ORG
|
||
assert ents[0].start == 9
|
||
assert ents[0].end == 11
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"patterns",
|
||
[
|
||
[[{"LOWER": "boston"}], [{"LOWER": "boston"}, {"LOWER": "celtics"}]],
|
||
[[{"LOWER": "boston"}, {"LOWER": "celtics"}], [{"LOWER": "boston"}]],
|
||
],
|
||
)
|
||
def test_issue118_prefix_reorder(en_tokenizer, patterns):
|
||
"""Test a bug that arose from having overlapping matches"""
|
||
text = (
|
||
"how many points did lebron james score against the boston celtics last night"
|
||
)
|
||
doc = en_tokenizer(text)
|
||
ORG = doc.vocab.strings["ORG"]
|
||
matcher = Matcher(doc.vocab)
|
||
matcher.add("BostonCeltics", patterns)
|
||
assert len(list(doc.ents)) == 0
|
||
matches = [(ORG, start, end) for _, start, end in matcher(doc)]
|
||
doc.ents += tuple(matches)[1:]
|
||
assert matches == [(ORG, 9, 10), (ORG, 9, 11)]
|
||
ents = doc.ents
|
||
assert len(ents) == 1
|
||
assert ents[0].label == ORG
|
||
assert ents[0].start == 9
|
||
assert ents[0].end == 11
|
||
|
||
|
||
def test_issue242(en_tokenizer):
|
||
"""Test overlapping multi-word phrases."""
|
||
text = "There are different food safety standards in different countries."
|
||
patterns = [
|
||
[{"LOWER": "food"}, {"LOWER": "safety"}],
|
||
[{"LOWER": "safety"}, {"LOWER": "standards"}],
|
||
]
|
||
doc = en_tokenizer(text)
|
||
matcher = Matcher(doc.vocab)
|
||
matcher.add("FOOD", patterns)
|
||
matches = [(ent_type, start, end) for ent_type, start, end in matcher(doc)]
|
||
match1, match2 = matches
|
||
assert match1[1] == 3
|
||
assert match1[2] == 5
|
||
assert match2[1] == 4
|
||
assert match2[2] == 6
|
||
with pytest.raises(ValueError):
|
||
# One token can only be part of one entity, so test that the matches
|
||
# can't be added as entities
|
||
doc.ents += tuple(matches)
|
||
|
||
|
||
def test_issue309(en_tokenizer):
|
||
"""Test Issue #309: SBD fails on empty string"""
|
||
tokens = en_tokenizer(" ")
|
||
doc = get_doc(
|
||
tokens.vocab, words=[t.text for t in tokens], heads=[0], deps=["ROOT"]
|
||
)
|
||
doc.is_parsed = True
|
||
assert len(doc) == 1
|
||
sents = list(doc.sents)
|
||
assert len(sents) == 1
|
||
|
||
|
||
def test_issue351(en_tokenizer):
|
||
doc = en_tokenizer(" This is a cat.")
|
||
assert doc[0].idx == 0
|
||
assert len(doc[0]) == 3
|
||
assert doc[1].idx == 3
|
||
|
||
|
||
def test_issue360(en_tokenizer):
|
||
"""Test tokenization of big ellipsis"""
|
||
tokens = en_tokenizer("$45...............Asking")
|
||
assert len(tokens) > 2
|
||
|
||
|
||
@pytest.mark.parametrize("text1,text2", [("cat", "dog")])
|
||
def test_issue361(en_vocab, text1, text2):
|
||
"""Test Issue #361: Equality of lexemes"""
|
||
assert en_vocab[text1] == en_vocab[text1]
|
||
assert en_vocab[text1] != en_vocab[text2]
|
||
|
||
|
||
def test_issue587(en_tokenizer):
|
||
"""Test that Matcher doesn't segfault on particular input"""
|
||
doc = en_tokenizer("a b; c")
|
||
matcher = Matcher(doc.vocab)
|
||
matcher.add("TEST1", [[{ORTH: "a"}, {ORTH: "b"}]])
|
||
matches = matcher(doc)
|
||
assert len(matches) == 1
|
||
matcher.add("TEST2", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "c"}]])
|
||
matches = matcher(doc)
|
||
assert len(matches) == 2
|
||
matcher.add("TEST3", [[{ORTH: "a"}, {ORTH: "b"}, {IS_PUNCT: True}, {ORTH: "d"}]])
|
||
matches = matcher(doc)
|
||
assert len(matches) == 2
|
||
|
||
|
||
def test_issue588(en_vocab):
|
||
matcher = Matcher(en_vocab)
|
||
with pytest.raises(ValueError):
|
||
matcher.add("TEST", [[]])
|
||
|
||
|
||
@pytest.mark.xfail
|
||
def test_issue589():
|
||
vocab = Vocab()
|
||
vocab.strings.set_frozen(True)
|
||
doc = Doc(vocab, words=["whata"])
|
||
assert doc
|
||
|
||
|
||
def test_issue590(en_vocab):
|
||
"""Test overlapping matches"""
|
||
doc = Doc(en_vocab, words=["n", "=", "1", ";", "a", ":", "5", "%"])
|
||
matcher = Matcher(en_vocab)
|
||
matcher.add(
|
||
"ab", [[{"IS_ALPHA": True}, {"ORTH": ":"}, {"LIKE_NUM": True}, {"ORTH": "%"}]]
|
||
)
|
||
matcher.add("ab", [[{"IS_ALPHA": True}, {"ORTH": "="}, {"LIKE_NUM": True}]])
|
||
matches = matcher(doc)
|
||
assert len(matches) == 2
|
||
|
||
|
||
def test_issue595():
|
||
"""Test lemmatization of base forms"""
|
||
words = ["Do", "n't", "feed", "the", "dog"]
|
||
tag_map = {"VB": {POS: VERB, "VerbForm": "inf"}}
|
||
lookups = Lookups()
|
||
lookups.add_table("lemma_rules", {"verb": [["ed", "e"]]})
|
||
lookups.add_table("lemma_index", {"verb": {}})
|
||
lookups.add_table("lemma_exc", {"verb": {}})
|
||
lemmatizer = Lemmatizer(lookups)
|
||
vocab = Vocab(lemmatizer=lemmatizer, tag_map=tag_map)
|
||
doc = Doc(vocab, words=words)
|
||
doc[2].tag_ = "VB"
|
||
assert doc[2].text == "feed"
|
||
assert doc[2].lemma_ == "feed"
|
||
|
||
|
||
def test_issue599(en_vocab):
|
||
doc = Doc(en_vocab)
|
||
doc.is_tagged = True
|
||
doc.is_parsed = True
|
||
doc2 = Doc(doc.vocab)
|
||
doc2.from_bytes(doc.to_bytes())
|
||
assert doc2.is_parsed
|
||
|
||
|
||
def test_issue600():
|
||
vocab = Vocab(tag_map={"NN": {"pos": "NOUN"}})
|
||
doc = Doc(vocab, words=["hello"])
|
||
doc[0].tag_ = "NN"
|
||
|
||
|
||
def test_issue615(en_tokenizer):
|
||
def merge_phrases(matcher, doc, i, matches):
|
||
"""Merge a phrase. We have to be careful here because we'll change the
|
||
token indices. To avoid problems, merge all the phrases once we're called
|
||
on the last match."""
|
||
if i != len(matches) - 1:
|
||
return None
|
||
spans = [Span(doc, start, end, label=label) for label, start, end in matches]
|
||
with doc.retokenize() as retokenizer:
|
||
for span in spans:
|
||
tag = "NNP" if span.label_ else span.root.tag_
|
||
attrs = {"tag": tag, "lemma": span.text}
|
||
retokenizer.merge(span, attrs=attrs)
|
||
doc.ents = doc.ents + (span,)
|
||
|
||
text = "The golf club is broken"
|
||
pattern = [{"ORTH": "golf"}, {"ORTH": "club"}]
|
||
label = "Sport_Equipment"
|
||
doc = en_tokenizer(text)
|
||
matcher = Matcher(doc.vocab)
|
||
matcher.add(label, [pattern], on_match=merge_phrases)
|
||
matcher(doc)
|
||
entities = list(doc.ents)
|
||
assert entities != []
|
||
assert entities[0].label != 0
|
||
|
||
|
||
@pytest.mark.parametrize("text,number", [("7am", "7"), ("11p.m.", "11")])
|
||
def test_issue736(en_tokenizer, text, number):
|
||
"""Test that times like "7am" are tokenized correctly and that numbers are
|
||
converted to string."""
|
||
tokens = en_tokenizer(text)
|
||
assert len(tokens) == 2
|
||
assert tokens[0].text == number
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["3/4/2012", "01/12/1900"])
|
||
def test_issue740(en_tokenizer, text):
|
||
"""Test that dates are not split and kept as one token. This behaviour is
|
||
currently inconsistent, since dates separated by hyphens are still split.
|
||
This will be hard to prevent without causing clashes with numeric ranges."""
|
||
tokens = en_tokenizer(text)
|
||
assert len(tokens) == 1
|
||
|
||
|
||
def test_issue743():
|
||
doc = Doc(Vocab(), ["hello", "world"])
|
||
token = doc[0]
|
||
s = set([token])
|
||
items = list(s)
|
||
assert items[0] is token
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["We were scared", "We Were Scared"])
|
||
def test_issue744(en_tokenizer, text):
|
||
"""Test that 'were' and 'Were' are excluded from the contractions
|
||
generated by the English tokenizer exceptions."""
|
||
tokens = en_tokenizer(text)
|
||
assert len(tokens) == 3
|
||
assert tokens[1].text.lower() == "were"
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"text,is_num", [("one", True), ("ten", True), ("teneleven", False)]
|
||
)
|
||
def test_issue759(en_tokenizer, text, is_num):
|
||
tokens = en_tokenizer(text)
|
||
assert tokens[0].like_num == is_num
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["Shell", "shell", "Shed", "shed"])
|
||
def test_issue775(en_tokenizer, text):
|
||
"""Test that 'Shell' and 'shell' are excluded from the contractions
|
||
generated by the English tokenizer exceptions."""
|
||
tokens = en_tokenizer(text)
|
||
assert len(tokens) == 1
|
||
assert tokens[0].text == text
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["This is a string ", "This is a string\u0020"])
|
||
def test_issue792(en_tokenizer, text):
|
||
"""Test for Issue #792: Trailing whitespace is removed after tokenization."""
|
||
doc = en_tokenizer(text)
|
||
assert "".join([token.text_with_ws for token in doc]) == text
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["This is a string", "This is a string\n"])
|
||
def test_control_issue792(en_tokenizer, text):
|
||
"""Test base case for Issue #792: Non-trailing whitespace"""
|
||
doc = en_tokenizer(text)
|
||
assert "".join([token.text_with_ws for token in doc]) == text
|
||
|
||
|
||
@pytest.mark.xfail
|
||
@pytest.mark.parametrize(
|
||
"text,tokens",
|
||
[
|
||
('"deserve,"--and', ['"', "deserve", ',"--', "and"]),
|
||
("exception;--exclusive", ["exception", ";--", "exclusive"]),
|
||
("day.--Is", ["day", ".--", "Is"]),
|
||
("refinement:--just", ["refinement", ":--", "just"]),
|
||
("memories?--To", ["memories", "?--", "To"]),
|
||
("Useful.=--Therefore", ["Useful", ".=--", "Therefore"]),
|
||
("=Hope.=--Pandora", ["=", "Hope", ".=--", "Pandora"]),
|
||
],
|
||
)
|
||
def test_issue801(en_tokenizer, text, tokens):
|
||
"""Test that special characters + hyphens are split correctly."""
|
||
doc = en_tokenizer(text)
|
||
assert len(doc) == len(tokens)
|
||
assert [t.text for t in doc] == tokens
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"text,expected_tokens",
|
||
[
|
||
(
|
||
"Smörsåsen används bl.a. till fisk",
|
||
["Smörsåsen", "används", "bl.a.", "till", "fisk"],
|
||
),
|
||
(
|
||
"Jag kommer först kl. 13 p.g.a. diverse förseningar",
|
||
["Jag", "kommer", "först", "kl.", "13", "p.g.a.", "diverse", "förseningar"],
|
||
),
|
||
],
|
||
)
|
||
def test_issue805(sv_tokenizer, text, expected_tokens):
|
||
tokens = sv_tokenizer(text)
|
||
token_list = [token.text for token in tokens if not token.is_space]
|
||
assert expected_tokens == token_list
|
||
|
||
|
||
def test_issue850():
|
||
"""The variable-length pattern matches the succeeding token. Check we
|
||
handle the ambiguity correctly."""
|
||
vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()})
|
||
matcher = Matcher(vocab)
|
||
pattern = [{"LOWER": "bob"}, {"OP": "*"}, {"LOWER": "frank"}]
|
||
matcher.add("FarAway", [pattern])
|
||
doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"])
|
||
match = matcher(doc)
|
||
assert len(match) == 1
|
||
ent_id, start, end = match[0]
|
||
assert start == 0
|
||
assert end == 4
|
||
|
||
|
||
def test_issue850_basic():
|
||
"""Test Matcher matches with '*' operator and Boolean flag"""
|
||
vocab = Vocab(lex_attr_getters={LOWER: lambda string: string.lower()})
|
||
matcher = Matcher(vocab)
|
||
pattern = [{"LOWER": "bob"}, {"OP": "*", "LOWER": "and"}, {"LOWER": "frank"}]
|
||
matcher.add("FarAway", [pattern])
|
||
doc = Doc(matcher.vocab, words=["bob", "and", "and", "frank"])
|
||
match = matcher(doc)
|
||
assert len(match) == 1
|
||
ent_id, start, end = match[0]
|
||
assert start == 0
|
||
assert end == 4
|
||
|
||
|
||
@pytest.mark.skip(
|
||
reason="French exception list is not enabled in the default tokenizer anymore"
|
||
)
|
||
@pytest.mark.parametrize(
|
||
"text", ["au-delàs", "pair-programmâmes", "terra-formées", "σ-compacts"]
|
||
)
|
||
def test_issue852(fr_tokenizer, text):
|
||
"""Test that French tokenizer exceptions are imported correctly."""
|
||
tokens = fr_tokenizer(text)
|
||
assert len(tokens) == 1
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"text", ["aaabbb@ccc.com\nThank you!", "aaabbb@ccc.com \nThank you!"]
|
||
)
|
||
def test_issue859(en_tokenizer, text):
|
||
"""Test that no extra space is added in doc.text method."""
|
||
doc = en_tokenizer(text)
|
||
assert doc.text == text
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["Datum:2014-06-02\nDokument:76467"])
|
||
def test_issue886(en_tokenizer, text):
|
||
"""Test that token.idx matches the original text index for texts with newlines."""
|
||
doc = en_tokenizer(text)
|
||
for token in doc:
|
||
assert len(token.text) == len(token.text_with_ws)
|
||
assert text[token.idx] == token.text[0]
|
||
|
||
|
||
@pytest.mark.parametrize("text", ["want/need"])
|
||
def test_issue891(en_tokenizer, text):
|
||
"""Test that / infixes are split correctly."""
|
||
tokens = en_tokenizer(text)
|
||
assert len(tokens) == 3
|
||
assert tokens[1].text == "/"
|
||
|
||
|
||
@pytest.mark.parametrize(
|
||
"text,tag,lemma",
|
||
[("anus", "NN", "anus"), ("princess", "NN", "princess"), ("inner", "JJ", "inner")],
|
||
)
|
||
def test_issue912(en_vocab, text, tag, lemma):
|
||
"""Test base-forms are preserved."""
|
||
doc = Doc(en_vocab, words=[text])
|
||
doc[0].tag_ = tag
|
||
assert doc[0].lemma_ == lemma
|
||
|
||
|
||
@pytest.mark.slow
|
||
def test_issue957(en_tokenizer):
|
||
"""Test that spaCy doesn't hang on many punctuation characters.
|
||
If this test hangs, check (new) regular expressions for conflicting greedy operators
|
||
"""
|
||
# Skip test if pytest-timeout is not installed
|
||
pytest.importorskip("pytest_timeout")
|
||
for punct in [".", ",", "'", '"', ":", "?", "!", ";", "-"]:
|
||
string = "0"
|
||
for i in range(1, 100):
|
||
string += punct + str(i)
|
||
doc = en_tokenizer(string)
|
||
assert doc
|
||
|
||
|
||
@pytest.mark.xfail
|
||
def test_issue999(train_data):
|
||
"""Test that adding entities and resuming training works passably OK.
|
||
There are two issues here:
|
||
1) We have to re-add labels. This isn't very nice.
|
||
2) There's no way to set the learning rate for the weight update, so we
|
||
end up out-of-scale, causing it to learn too fast.
|
||
"""
|
||
TRAIN_DATA = [
|
||
["hey", []],
|
||
["howdy", []],
|
||
["hey there", []],
|
||
["hello", []],
|
||
["hi", []],
|
||
["i'm looking for a place to eat", []],
|
||
["i'm looking for a place in the north of town", [[31, 36, "LOCATION"]]],
|
||
["show me chinese restaurants", [[8, 15, "CUISINE"]]],
|
||
["show me chines restaurants", [[8, 14, "CUISINE"]]],
|
||
]
|
||
|
||
nlp = Language()
|
||
ner = nlp.create_pipe("ner")
|
||
nlp.add_pipe(ner)
|
||
for _, offsets in TRAIN_DATA:
|
||
for start, end, label in offsets:
|
||
ner.add_label(label)
|
||
nlp.begin_training()
|
||
ner.model.learn_rate = 0.001
|
||
for itn in range(100):
|
||
random.shuffle(TRAIN_DATA)
|
||
for raw_text, entity_offsets in TRAIN_DATA:
|
||
nlp.update((raw_text, {"entities": entity_offsets}))
|
||
|
||
with make_tempdir() as model_dir:
|
||
nlp.to_disk(model_dir)
|
||
nlp2 = Language().from_disk(model_dir)
|
||
|
||
for raw_text, entity_offsets in TRAIN_DATA:
|
||
doc = nlp2(raw_text)
|
||
ents = {(ent.start_char, ent.end_char): ent.label_ for ent in doc.ents}
|
||
for start, end, label in entity_offsets:
|
||
if (start, end) in ents:
|
||
assert ents[(start, end)] == label
|
||
break
|
||
else:
|
||
if entity_offsets:
|
||
raise Exception(ents)
|