mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Enable flag on spacy.load: foundation for include, enable arguments. * Enable flag on spacy.load: fixed tests. * Enable flag on spacy.load: switched from pretrained model to empty model with added pipes for tests. * Enable flag on spacy.load: switched to more consistent error on misspecification of component activity. Test refactoring. Added to default config. * Enable flag on spacy.load: added support for fields not in pipeline. * Enable flag on spacy.load: removed serialization fields from supported fields. * Enable flag on spacy.load: removed 'enable' from config again. * Enable flag on spacy.load: relaxed checks in _resolve_component_activation_status() to allow non-standard pipes. * Enable flag on spacy.load: fixed relaxed checks for _resolve_component_activation_status() to allow non-standard pipes. Extended tests. * Enable flag on spacy.load: comments w.r.t. resolution workarounds. * Enable flag on spacy.load: remove include fields. Update website docs. * Enable flag on spacy.load: updates w.r.t. changes in master. * Implement Doc.from_json(): update docstrings. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Implement Doc.from_json(): remove newline. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Implement Doc.from_json(): change error message for E1038. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Enable flag on spacy.load: wrapped docstring for _resolve_component_status() at 80 chars. * Enable flag on spacy.load: changed exmples for enable flag. * Remove newline. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix docstring for Language._resolve_component_status(). * Rename E1038 to E1042. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			655 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import gc
 | 
						|
 | 
						|
import numpy
 | 
						|
import pytest
 | 
						|
from thinc.api import get_current_ops
 | 
						|
 | 
						|
import spacy
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.lang.en.syntax_iterators import noun_chunks
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import TrainablePipe
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.training import Example
 | 
						|
from spacy.util import SimpleFrozenList, get_arg_names, make_tempdir
 | 
						|
from spacy.vocab import Vocab
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def nlp():
 | 
						|
    return Language()
 | 
						|
 | 
						|
 | 
						|
@Language.component("new_pipe")
 | 
						|
def new_pipe(doc):
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
@Language.component("other_pipe")
 | 
						|
def other_pipe(doc):
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(1506)
 | 
						|
def test_issue1506():
 | 
						|
    def string_generator():
 | 
						|
        for _ in range(10001):
 | 
						|
            yield "It's sentence produced by that bug."
 | 
						|
        for _ in range(10001):
 | 
						|
            yield "I erase some hbdsaj lemmas."
 | 
						|
        for _ in range(10001):
 | 
						|
            yield "I erase lemmas."
 | 
						|
        for _ in range(10001):
 | 
						|
            yield "It's sentence produced by that bug."
 | 
						|
        for _ in range(10001):
 | 
						|
            yield "It's sentence produced by that bug."
 | 
						|
 | 
						|
    nlp = English()
 | 
						|
    for i, d in enumerate(nlp.pipe(string_generator())):
 | 
						|
        # We should run cleanup more than one time to actually cleanup data.
 | 
						|
        # In first run — clean up only mark strings as «not hitted».
 | 
						|
        if i == 10000 or i == 20000 or i == 30000:
 | 
						|
            gc.collect()
 | 
						|
        for t in d:
 | 
						|
            str(t.lemma_)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(1654)
 | 
						|
def test_issue1654():
 | 
						|
    nlp = Language(Vocab())
 | 
						|
    assert not nlp.pipeline
 | 
						|
 | 
						|
    @Language.component("component")
 | 
						|
    def component(doc):
 | 
						|
        return doc
 | 
						|
 | 
						|
    nlp.add_pipe("component", name="1")
 | 
						|
    nlp.add_pipe("component", name="2", after="1")
 | 
						|
    nlp.add_pipe("component", name="3", after="2")
 | 
						|
    assert nlp.pipe_names == ["1", "2", "3"]
 | 
						|
    nlp2 = Language(Vocab())
 | 
						|
    assert not nlp2.pipeline
 | 
						|
    nlp2.add_pipe("component", name="3")
 | 
						|
    nlp2.add_pipe("component", name="2", before="3")
 | 
						|
    nlp2.add_pipe("component", name="1", before="2")
 | 
						|
    assert nlp2.pipe_names == ["1", "2", "3"]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(3880)
 | 
						|
def test_issue3880():
 | 
						|
    """Test that `nlp.pipe()` works when an empty string ends the batch.
 | 
						|
 | 
						|
    Fixed in v7.0.5 of Thinc.
 | 
						|
    """
 | 
						|
    texts = ["hello", "world", "", ""]
 | 
						|
    nlp = English()
 | 
						|
    nlp.add_pipe("parser").add_label("dep")
 | 
						|
    nlp.add_pipe("ner").add_label("PERSON")
 | 
						|
    nlp.add_pipe("tagger").add_label("NN")
 | 
						|
    nlp.initialize()
 | 
						|
    for doc in nlp.pipe(texts):
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(5082)
 | 
						|
def test_issue5082():
 | 
						|
    # Ensure the 'merge_entities' pipeline does something sensible for the vectors of the merged tokens
 | 
						|
    nlp = English()
 | 
						|
    vocab = nlp.vocab
 | 
						|
    array1 = numpy.asarray([0.1, 0.5, 0.8], dtype=numpy.float32)
 | 
						|
    array2 = numpy.asarray([-0.2, -0.6, -0.9], dtype=numpy.float32)
 | 
						|
    array3 = numpy.asarray([0.3, -0.1, 0.7], dtype=numpy.float32)
 | 
						|
    array4 = numpy.asarray([0.5, 0, 0.3], dtype=numpy.float32)
 | 
						|
    array34 = numpy.asarray([0.4, -0.05, 0.5], dtype=numpy.float32)
 | 
						|
    vocab.set_vector("I", array1)
 | 
						|
    vocab.set_vector("like", array2)
 | 
						|
    vocab.set_vector("David", array3)
 | 
						|
    vocab.set_vector("Bowie", array4)
 | 
						|
    text = "I like David Bowie"
 | 
						|
    patterns = [
 | 
						|
        {"label": "PERSON", "pattern": [{"LOWER": "david"}, {"LOWER": "bowie"}]}
 | 
						|
    ]
 | 
						|
    ruler = nlp.add_pipe("entity_ruler")
 | 
						|
    ruler.add_patterns(patterns)
 | 
						|
    parsed_vectors_1 = [t.vector for t in nlp(text)]
 | 
						|
    assert len(parsed_vectors_1) == 4
 | 
						|
    ops = get_current_ops()
 | 
						|
    numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[0]), array1)
 | 
						|
    numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[1]), array2)
 | 
						|
    numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[2]), array3)
 | 
						|
    numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_1[3]), array4)
 | 
						|
    nlp.add_pipe("merge_entities")
 | 
						|
    parsed_vectors_2 = [t.vector for t in nlp(text)]
 | 
						|
    assert len(parsed_vectors_2) == 3
 | 
						|
    numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[0]), array1)
 | 
						|
    numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[1]), array2)
 | 
						|
    numpy.testing.assert_array_equal(ops.to_numpy(parsed_vectors_2[2]), array34)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(5458)
 | 
						|
def test_issue5458():
 | 
						|
    # Test that the noun chuncker does not generate overlapping spans
 | 
						|
    # fmt: off
 | 
						|
    words = ["In", "an", "era", "where", "markets", "have", "brought", "prosperity", "and", "empowerment", "."]
 | 
						|
    vocab = Vocab(strings=words)
 | 
						|
    deps = ["ROOT", "det", "pobj", "advmod", "nsubj", "aux", "relcl", "dobj", "cc", "conj", "punct"]
 | 
						|
    pos = ["ADP", "DET", "NOUN", "ADV", "NOUN", "AUX", "VERB", "NOUN", "CCONJ", "NOUN", "PUNCT"]
 | 
						|
    heads = [0, 2, 0, 9, 6, 6, 2, 6, 7, 7, 0]
 | 
						|
    # fmt: on
 | 
						|
    en_doc = Doc(vocab, words=words, pos=pos, heads=heads, deps=deps)
 | 
						|
    en_doc.noun_chunks_iterator = noun_chunks
 | 
						|
 | 
						|
    # if there are overlapping spans, this will fail with an E102 error "Can't merge non-disjoint spans"
 | 
						|
    nlp = English()
 | 
						|
    merge_nps = nlp.create_pipe("merge_noun_chunks")
 | 
						|
    merge_nps(en_doc)
 | 
						|
 | 
						|
 | 
						|
def test_multiple_predictions():
 | 
						|
    class DummyPipe(TrainablePipe):
 | 
						|
        def __init__(self):
 | 
						|
            self.model = "dummy_model"
 | 
						|
 | 
						|
        def predict(self, docs):
 | 
						|
            return ([1, 2, 3], [4, 5, 6])
 | 
						|
 | 
						|
        def set_annotations(self, docs, scores):
 | 
						|
            return docs
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    doc = nlp.make_doc("foo")
 | 
						|
    dummy_pipe = DummyPipe()
 | 
						|
    dummy_pipe(doc)
 | 
						|
 | 
						|
 | 
						|
def test_add_pipe_no_name(nlp):
 | 
						|
    nlp.add_pipe("new_pipe")
 | 
						|
    assert "new_pipe" in nlp.pipe_names
 | 
						|
 | 
						|
 | 
						|
def test_add_pipe_duplicate_name(nlp):
 | 
						|
    nlp.add_pipe("new_pipe", name="duplicate_name")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("new_pipe", name="duplicate_name")
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["parser"])
 | 
						|
def test_add_pipe_first(nlp, name):
 | 
						|
    nlp.add_pipe("new_pipe", name=name, first=True)
 | 
						|
    assert nlp.pipeline[0][0] == name
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name1,name2", [("parser", "lambda_pipe")])
 | 
						|
def test_add_pipe_last(nlp, name1, name2):
 | 
						|
    Language.component("new_pipe2", func=lambda doc: doc)
 | 
						|
    nlp.add_pipe("new_pipe2", name=name2)
 | 
						|
    nlp.add_pipe("new_pipe", name=name1, last=True)
 | 
						|
    assert nlp.pipeline[0][0] != name1
 | 
						|
    assert nlp.pipeline[-1][0] == name1
 | 
						|
 | 
						|
 | 
						|
def test_cant_add_pipe_first_and_last(nlp):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("new_pipe", first=True, last=True)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["test_get_pipe"])
 | 
						|
def test_get_pipe(nlp, name):
 | 
						|
    with pytest.raises(KeyError):
 | 
						|
        nlp.get_pipe(name)
 | 
						|
    nlp.add_pipe("new_pipe", name=name)
 | 
						|
    assert nlp.get_pipe(name) == new_pipe
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "name,replacement,invalid_replacement",
 | 
						|
    [("test_replace_pipe", "other_pipe", lambda doc: doc)],
 | 
						|
)
 | 
						|
def test_replace_pipe(nlp, name, replacement, invalid_replacement):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_pipe(name, new_pipe)
 | 
						|
    nlp.add_pipe("new_pipe", name=name)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_pipe(name, invalid_replacement)
 | 
						|
    nlp.replace_pipe(name, replacement)
 | 
						|
    assert nlp.get_pipe(name) == nlp.create_pipe(replacement)
 | 
						|
 | 
						|
 | 
						|
def test_replace_last_pipe(nlp):
 | 
						|
    nlp.add_pipe("sentencizer")
 | 
						|
    nlp.add_pipe("ner")
 | 
						|
    assert nlp.pipe_names == ["sentencizer", "ner"]
 | 
						|
    nlp.replace_pipe("ner", "ner")
 | 
						|
    assert nlp.pipe_names == ["sentencizer", "ner"]
 | 
						|
 | 
						|
 | 
						|
def test_replace_pipe_config(nlp):
 | 
						|
    nlp.add_pipe("entity_linker")
 | 
						|
    nlp.add_pipe("sentencizer")
 | 
						|
    assert nlp.get_pipe("entity_linker").incl_prior is True
 | 
						|
    nlp.replace_pipe("entity_linker", "entity_linker", config={"incl_prior": False})
 | 
						|
    assert nlp.get_pipe("entity_linker").incl_prior is False
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("old_name,new_name", [("old_pipe", "new_pipe")])
 | 
						|
def test_rename_pipe(nlp, old_name, new_name):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.rename_pipe(old_name, new_name)
 | 
						|
    nlp.add_pipe("new_pipe", name=old_name)
 | 
						|
    nlp.rename_pipe(old_name, new_name)
 | 
						|
    assert nlp.pipeline[0][0] == new_name
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_remove_pipe(nlp, name):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.remove_pipe(name)
 | 
						|
    nlp.add_pipe("new_pipe", name=name)
 | 
						|
    assert len(nlp.pipeline) == 1
 | 
						|
    removed_name, removed_component = nlp.remove_pipe(name)
 | 
						|
    assert not len(nlp.pipeline)
 | 
						|
    assert removed_name == name
 | 
						|
    assert removed_component == new_pipe
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_disable_pipes_method(nlp, name):
 | 
						|
    nlp.add_pipe("new_pipe", name=name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
    disabled = nlp.select_pipes(disable=name)
 | 
						|
    assert not nlp.has_pipe(name)
 | 
						|
    disabled.restore()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_enable_pipes_method(nlp, name):
 | 
						|
    nlp.add_pipe("new_pipe", name=name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
    disabled = nlp.select_pipes(enable=[])
 | 
						|
    assert not nlp.has_pipe(name)
 | 
						|
    disabled.restore()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_disable_pipes_context(nlp, name):
 | 
						|
    """Test that an enabled component stays enabled after running the context manager."""
 | 
						|
    nlp.add_pipe("new_pipe", name=name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
    with nlp.select_pipes(disable=name):
 | 
						|
        assert not nlp.has_pipe(name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("name", ["my_component"])
 | 
						|
def test_disable_pipes_context_restore(nlp, name):
 | 
						|
    """Test that a disabled component stays disabled after running the context manager."""
 | 
						|
    nlp.add_pipe("new_pipe", name=name)
 | 
						|
    assert nlp.has_pipe(name)
 | 
						|
    nlp.disable_pipe(name)
 | 
						|
    assert not nlp.has_pipe(name)
 | 
						|
    with nlp.select_pipes(disable=name):
 | 
						|
        assert not nlp.has_pipe(name)
 | 
						|
    assert not nlp.has_pipe(name)
 | 
						|
 | 
						|
 | 
						|
def test_select_pipes_list_arg(nlp):
 | 
						|
    for name in ["c1", "c2", "c3"]:
 | 
						|
        nlp.add_pipe("new_pipe", name=name)
 | 
						|
        assert nlp.has_pipe(name)
 | 
						|
    with nlp.select_pipes(disable=["c1", "c2"]):
 | 
						|
        assert not nlp.has_pipe("c1")
 | 
						|
        assert not nlp.has_pipe("c2")
 | 
						|
        assert nlp.has_pipe("c3")
 | 
						|
    with nlp.select_pipes(enable="c3"):
 | 
						|
        assert not nlp.has_pipe("c1")
 | 
						|
        assert not nlp.has_pipe("c2")
 | 
						|
        assert nlp.has_pipe("c3")
 | 
						|
    with nlp.select_pipes(enable=["c1", "c2"], disable="c3"):
 | 
						|
        assert nlp.has_pipe("c1")
 | 
						|
        assert nlp.has_pipe("c2")
 | 
						|
        assert not nlp.has_pipe("c3")
 | 
						|
    with nlp.select_pipes(enable=[]):
 | 
						|
        assert not nlp.has_pipe("c1")
 | 
						|
        assert not nlp.has_pipe("c2")
 | 
						|
        assert not nlp.has_pipe("c3")
 | 
						|
    with nlp.select_pipes(enable=["c1", "c2", "c3"], disable=[]):
 | 
						|
        assert nlp.has_pipe("c1")
 | 
						|
        assert nlp.has_pipe("c2")
 | 
						|
        assert nlp.has_pipe("c3")
 | 
						|
    with nlp.select_pipes(disable=["c1", "c2", "c3"], enable=[]):
 | 
						|
        assert not nlp.has_pipe("c1")
 | 
						|
        assert not nlp.has_pipe("c2")
 | 
						|
        assert not nlp.has_pipe("c3")
 | 
						|
 | 
						|
 | 
						|
def test_select_pipes_errors(nlp):
 | 
						|
    for name in ["c1", "c2", "c3"]:
 | 
						|
        nlp.add_pipe("new_pipe", name=name)
 | 
						|
        assert nlp.has_pipe(name)
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.select_pipes()
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.select_pipes(enable=["c1", "c2"], disable=["c1"])
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.select_pipes(enable=["c1", "c2"], disable=[])
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.select_pipes(enable=[], disable=["c3"])
 | 
						|
 | 
						|
    disabled = nlp.select_pipes(disable=["c2"])
 | 
						|
    nlp.remove_pipe("c2")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        disabled.restore()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("n_pipes", [100])
 | 
						|
def test_add_lots_of_pipes(nlp, n_pipes):
 | 
						|
    Language.component("n_pipes", func=lambda doc: doc)
 | 
						|
    for i in range(n_pipes):
 | 
						|
        nlp.add_pipe("n_pipes", name=f"pipe_{i}")
 | 
						|
    assert len(nlp.pipe_names) == n_pipes
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("component", [lambda doc: doc, {"hello": "world"}])
 | 
						|
def test_raise_for_invalid_components(nlp, component):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe(component)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("component", ["ner", "tagger", "parser", "textcat"])
 | 
						|
def test_pipe_base_class_add_label(nlp, component):
 | 
						|
    label = "TEST"
 | 
						|
    pipe = nlp.create_pipe(component)
 | 
						|
    pipe.add_label(label)
 | 
						|
    if component == "tagger":
 | 
						|
        # Tagger always has the default coarse-grained label scheme
 | 
						|
        assert label in pipe.labels
 | 
						|
    else:
 | 
						|
        assert pipe.labels == (label,)
 | 
						|
 | 
						|
 | 
						|
def test_pipe_labels(nlp):
 | 
						|
    input_labels = {
 | 
						|
        "ner": ["PERSON", "ORG", "GPE"],
 | 
						|
        "textcat": ["POSITIVE", "NEGATIVE"],
 | 
						|
    }
 | 
						|
    for name, labels in input_labels.items():
 | 
						|
        nlp.add_pipe(name)
 | 
						|
        pipe = nlp.get_pipe(name)
 | 
						|
        for label in labels:
 | 
						|
            pipe.add_label(label)
 | 
						|
        assert len(pipe.labels) == len(labels)
 | 
						|
 | 
						|
    assert len(nlp.pipe_labels) == len(input_labels)
 | 
						|
    for name, labels in nlp.pipe_labels.items():
 | 
						|
        assert sorted(input_labels[name]) == sorted(labels)
 | 
						|
 | 
						|
 | 
						|
def test_add_pipe_before_after():
 | 
						|
    """Test that before/after works with strings and ints."""
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("ner")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("textcat", before="parser")
 | 
						|
    nlp.add_pipe("textcat", before="ner")
 | 
						|
    assert nlp.pipe_names == ["textcat", "ner"]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("parser", before=3)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("parser", after=3)
 | 
						|
    nlp.add_pipe("parser", after=0)
 | 
						|
    assert nlp.pipe_names == ["textcat", "parser", "ner"]
 | 
						|
    nlp.add_pipe("tagger", before=2)
 | 
						|
    assert nlp.pipe_names == ["textcat", "parser", "tagger", "ner"]
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("entity_ruler", after=1, first=True)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("entity_ruler", before="ner", after=2)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("entity_ruler", before=True)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe("entity_ruler", first=False)
 | 
						|
 | 
						|
 | 
						|
def test_disable_enable_pipes():
 | 
						|
    name = "test_disable_enable_pipes"
 | 
						|
    results = {}
 | 
						|
 | 
						|
    def make_component(name):
 | 
						|
        results[name] = ""
 | 
						|
 | 
						|
        def component(doc):
 | 
						|
            nonlocal results
 | 
						|
            results[name] = doc.text
 | 
						|
            return doc
 | 
						|
 | 
						|
        return component
 | 
						|
 | 
						|
    c1 = Language.component(f"{name}1", func=make_component(f"{name}1"))
 | 
						|
    c2 = Language.component(f"{name}2", func=make_component(f"{name}2"))
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(f"{name}1")
 | 
						|
    nlp.add_pipe(f"{name}2")
 | 
						|
    assert results[f"{name}1"] == ""
 | 
						|
    assert results[f"{name}2"] == ""
 | 
						|
    assert nlp.pipeline == [(f"{name}1", c1), (f"{name}2", c2)]
 | 
						|
    assert nlp.pipe_names == [f"{name}1", f"{name}2"]
 | 
						|
    nlp.disable_pipe(f"{name}1")
 | 
						|
    assert nlp.disabled == [f"{name}1"]
 | 
						|
    assert nlp.component_names == [f"{name}1", f"{name}2"]
 | 
						|
    assert nlp.pipe_names == [f"{name}2"]
 | 
						|
    assert nlp.config["nlp"]["disabled"] == [f"{name}1"]
 | 
						|
    nlp("hello")
 | 
						|
    assert results[f"{name}1"] == ""  # didn't run
 | 
						|
    assert results[f"{name}2"] == "hello"  # ran
 | 
						|
    nlp.enable_pipe(f"{name}1")
 | 
						|
    assert nlp.disabled == []
 | 
						|
    assert nlp.pipe_names == [f"{name}1", f"{name}2"]
 | 
						|
    assert nlp.config["nlp"]["disabled"] == []
 | 
						|
    nlp("world")
 | 
						|
    assert results[f"{name}1"] == "world"
 | 
						|
    assert results[f"{name}2"] == "world"
 | 
						|
    nlp.disable_pipe(f"{name}2")
 | 
						|
    nlp.remove_pipe(f"{name}2")
 | 
						|
    assert nlp.components == [(f"{name}1", c1)]
 | 
						|
    assert nlp.pipeline == [(f"{name}1", c1)]
 | 
						|
    assert nlp.component_names == [f"{name}1"]
 | 
						|
    assert nlp.pipe_names == [f"{name}1"]
 | 
						|
    assert nlp.disabled == []
 | 
						|
    assert nlp.config["nlp"]["disabled"] == []
 | 
						|
    nlp.rename_pipe(f"{name}1", name)
 | 
						|
    assert nlp.components == [(name, c1)]
 | 
						|
    assert nlp.component_names == [name]
 | 
						|
    nlp("!")
 | 
						|
    assert results[f"{name}1"] == "!"
 | 
						|
    assert results[f"{name}2"] == "world"
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.disable_pipe(f"{name}2")
 | 
						|
    nlp.disable_pipe(name)
 | 
						|
    assert nlp.component_names == [name]
 | 
						|
    assert nlp.pipe_names == []
 | 
						|
    assert nlp.config["nlp"]["disabled"] == [name]
 | 
						|
    nlp("?")
 | 
						|
    assert results[f"{name}1"] == "!"
 | 
						|
 | 
						|
 | 
						|
def test_pipe_methods_frozen():
 | 
						|
    """Test that spaCy raises custom error messages if "frozen" properties are
 | 
						|
    accessed. We still want to use a list here to not break backwards
 | 
						|
    compatibility, but users should see an error if they're trying to append
 | 
						|
    to nlp.pipeline etc."""
 | 
						|
    nlp = Language()
 | 
						|
    ner = nlp.add_pipe("ner")
 | 
						|
    assert nlp.pipe_names == ["ner"]
 | 
						|
    for prop in [
 | 
						|
        nlp.pipeline,
 | 
						|
        nlp.pipe_names,
 | 
						|
        nlp.components,
 | 
						|
        nlp.component_names,
 | 
						|
        nlp.disabled,
 | 
						|
        nlp.factory_names,
 | 
						|
    ]:
 | 
						|
        assert isinstance(prop, list)
 | 
						|
        assert isinstance(prop, SimpleFrozenList)
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        nlp.pipeline.append(("ner2", ner))
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        nlp.pipe_names.pop()
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        nlp.components.sort()
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        nlp.component_names.clear()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "pipe", ["tagger", "parser", "ner", "textcat", "morphologizer"]
 | 
						|
)
 | 
						|
def test_pipe_label_data_exports_labels(pipe):
 | 
						|
    nlp = Language()
 | 
						|
    pipe = nlp.add_pipe(pipe)
 | 
						|
    # Make sure pipe has pipe labels
 | 
						|
    assert getattr(pipe, "label_data", None) is not None
 | 
						|
    # Make sure pipe can be initialized with labels
 | 
						|
    initialize = getattr(pipe, "initialize", None)
 | 
						|
    assert initialize is not None
 | 
						|
    assert "labels" in get_arg_names(initialize)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("pipe", ["senter", "entity_linker"])
 | 
						|
def test_pipe_label_data_no_labels(pipe):
 | 
						|
    nlp = Language()
 | 
						|
    pipe = nlp.add_pipe(pipe)
 | 
						|
    assert getattr(pipe, "label_data", None) is None
 | 
						|
    initialize = getattr(pipe, "initialize", None)
 | 
						|
    if initialize is not None:
 | 
						|
        assert "labels" not in get_arg_names(initialize)
 | 
						|
 | 
						|
 | 
						|
def test_warning_pipe_begin_training():
 | 
						|
    with pytest.warns(UserWarning, match="begin_training"):
 | 
						|
 | 
						|
        class IncompatPipe(TrainablePipe):
 | 
						|
            def __init__(self):
 | 
						|
                ...
 | 
						|
 | 
						|
            def begin_training(*args, **kwargs):
 | 
						|
                ...
 | 
						|
 | 
						|
 | 
						|
def test_pipe_methods_initialize():
 | 
						|
    """Test that the [initialize] config reflects the components correctly."""
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("tagger")
 | 
						|
    assert "tagger" not in nlp.config["initialize"]["components"]
 | 
						|
    nlp.config["initialize"]["components"]["tagger"] = {"labels": ["hello"]}
 | 
						|
    assert nlp.config["initialize"]["components"]["tagger"] == {"labels": ["hello"]}
 | 
						|
    nlp.remove_pipe("tagger")
 | 
						|
    assert "tagger" not in nlp.config["initialize"]["components"]
 | 
						|
    nlp.add_pipe("tagger")
 | 
						|
    assert "tagger" not in nlp.config["initialize"]["components"]
 | 
						|
    nlp.config["initialize"]["components"]["tagger"] = {"labels": ["hello"]}
 | 
						|
    nlp.rename_pipe("tagger", "my_tagger")
 | 
						|
    assert "tagger" not in nlp.config["initialize"]["components"]
 | 
						|
    assert nlp.config["initialize"]["components"]["my_tagger"] == {"labels": ["hello"]}
 | 
						|
    nlp.config["initialize"]["components"]["test"] = {"foo": "bar"}
 | 
						|
    nlp.add_pipe("ner", name="test")
 | 
						|
    assert "test" in nlp.config["initialize"]["components"]
 | 
						|
    nlp.remove_pipe("test")
 | 
						|
    assert "test" not in nlp.config["initialize"]["components"]
 | 
						|
 | 
						|
 | 
						|
def test_update_with_annotates():
 | 
						|
    name = "test_with_annotates"
 | 
						|
    results = {}
 | 
						|
 | 
						|
    def make_component(name):
 | 
						|
        results[name] = ""
 | 
						|
 | 
						|
        def component(doc):
 | 
						|
            nonlocal results
 | 
						|
            results[name] += doc.text
 | 
						|
            return doc
 | 
						|
 | 
						|
        return component
 | 
						|
 | 
						|
    Language.component(f"{name}1", func=make_component(f"{name}1"))
 | 
						|
    Language.component(f"{name}2", func=make_component(f"{name}2"))
 | 
						|
 | 
						|
    components = set([f"{name}1", f"{name}2"])
 | 
						|
 | 
						|
    nlp = English()
 | 
						|
    texts = ["a", "bb", "ccc"]
 | 
						|
    examples = []
 | 
						|
    for text in texts:
 | 
						|
        examples.append(Example(nlp.make_doc(text), nlp.make_doc(text)))
 | 
						|
 | 
						|
    for components_to_annotate in [
 | 
						|
        [],
 | 
						|
        [f"{name}1"],
 | 
						|
        [f"{name}1", f"{name}2"],
 | 
						|
        [f"{name}2", f"{name}1"],
 | 
						|
    ]:
 | 
						|
        for key in results:
 | 
						|
            results[key] = ""
 | 
						|
        nlp = English(vocab=nlp.vocab)
 | 
						|
        nlp.add_pipe(f"{name}1")
 | 
						|
        nlp.add_pipe(f"{name}2")
 | 
						|
        nlp.update(examples, annotates=components_to_annotate)
 | 
						|
        for component in components_to_annotate:
 | 
						|
            assert results[component] == "".join(eg.predicted.text for eg in examples)
 | 
						|
        for component in components - set(components_to_annotate):
 | 
						|
            assert results[component] == ""
 | 
						|
 | 
						|
 | 
						|
def test_load_disable_enable() -> None:
 | 
						|
    """
 | 
						|
    Tests spacy.load() with dis-/enabling components.
 | 
						|
    """
 | 
						|
 | 
						|
    base_nlp = English()
 | 
						|
    for pipe in ("sentencizer", "tagger", "parser"):
 | 
						|
        base_nlp.add_pipe(pipe)
 | 
						|
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        base_nlp.to_disk(tmp_dir)
 | 
						|
        to_disable = ["parser", "tagger"]
 | 
						|
        to_enable = ["tagger", "parser"]
 | 
						|
 | 
						|
        # Setting only `disable`.
 | 
						|
        nlp = spacy.load(tmp_dir, disable=to_disable)
 | 
						|
        assert all([comp_name in nlp.disabled for comp_name in to_disable])
 | 
						|
 | 
						|
        # Setting only `enable`.
 | 
						|
        nlp = spacy.load(tmp_dir, enable=to_enable)
 | 
						|
        assert all(
 | 
						|
            [
 | 
						|
                (comp_name in nlp.disabled) is (comp_name not in to_enable)
 | 
						|
                for comp_name in nlp.component_names
 | 
						|
            ]
 | 
						|
        )
 | 
						|
 | 
						|
        # Testing consistent enable/disable combination.
 | 
						|
        nlp = spacy.load(
 | 
						|
            tmp_dir,
 | 
						|
            enable=to_enable,
 | 
						|
            disable=[
 | 
						|
                comp_name
 | 
						|
                for comp_name in nlp.component_names
 | 
						|
                if comp_name not in to_enable
 | 
						|
            ],
 | 
						|
        )
 | 
						|
        assert all(
 | 
						|
            [
 | 
						|
                (comp_name in nlp.disabled) is (comp_name not in to_enable)
 | 
						|
                for comp_name in nlp.component_names
 | 
						|
            ]
 | 
						|
        )
 | 
						|
 | 
						|
        # Inconsistent enable/disable combination.
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            spacy.load(tmp_dir, enable=to_enable, disable=["parser"])
 |