mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			318 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
# cython: infer_types=True
 | 
						|
"""
 | 
						|
MALT-style dependency parser
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals
 | 
						|
cimport cython
 | 
						|
cimport cython.parallel
 | 
						|
 | 
						|
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
 | 
						|
from cpython.exc cimport PyErr_CheckSignals
 | 
						|
 | 
						|
from libc.stdint cimport uint32_t, uint64_t
 | 
						|
from libc.string cimport memset, memcpy
 | 
						|
from libc.stdlib cimport malloc, calloc, free
 | 
						|
import os.path
 | 
						|
from os import path
 | 
						|
import shutil
 | 
						|
import json
 | 
						|
import sys
 | 
						|
from .nonproj import PseudoProjectivity
 | 
						|
 | 
						|
from cymem.cymem cimport Pool, Address
 | 
						|
from murmurhash.mrmr cimport hash64
 | 
						|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
 | 
						|
from thinc.linear.avgtron cimport AveragedPerceptron
 | 
						|
from thinc.linalg cimport VecVec
 | 
						|
from thinc.structs cimport SparseArrayC
 | 
						|
from preshed.maps cimport MapStruct
 | 
						|
from preshed.maps cimport map_get
 | 
						|
from thinc.structs cimport FeatureC
 | 
						|
 | 
						|
from util import Config
 | 
						|
 | 
						|
from ..structs cimport TokenC
 | 
						|
 | 
						|
from ..tokens.doc cimport Doc
 | 
						|
from ..strings cimport StringStore
 | 
						|
 | 
						|
from .transition_system import OracleError
 | 
						|
from .transition_system cimport TransitionSystem, Transition
 | 
						|
 | 
						|
from ..gold cimport GoldParse
 | 
						|
 | 
						|
from . import _parse_features
 | 
						|
from ._parse_features cimport CONTEXT_SIZE
 | 
						|
from ._parse_features cimport fill_context
 | 
						|
from .stateclass cimport StateClass
 | 
						|
from ._state cimport StateC
 | 
						|
 | 
						|
 | 
						|
DEBUG = False
 | 
						|
def set_debug(val):
 | 
						|
    global DEBUG
 | 
						|
    DEBUG = val
 | 
						|
 | 
						|
 | 
						|
def get_templates(name):
 | 
						|
    pf = _parse_features
 | 
						|
    if name == 'ner':
 | 
						|
        return pf.ner
 | 
						|
    elif name == 'debug':
 | 
						|
        return pf.unigrams
 | 
						|
    elif name.startswith('embed'):
 | 
						|
        return (pf.words, pf.tags, pf.labels)
 | 
						|
    else:
 | 
						|
        return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
 | 
						|
                pf.tree_shape + pf.trigrams)
 | 
						|
 | 
						|
 | 
						|
def ParserFactory(transition_system):
 | 
						|
    return lambda strings, dir_: Parser(strings, dir_, transition_system)
 | 
						|
 | 
						|
 | 
						|
cdef class ParserModel(AveragedPerceptron):
 | 
						|
    cdef void set_featuresC(self, ExampleC* eg, const StateC* state) nogil: 
 | 
						|
        fill_context(eg.atoms, state)
 | 
						|
        eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
 | 
						|
 | 
						|
 | 
						|
cdef class Parser:
 | 
						|
    def __init__(self, StringStore strings, transition_system, ParserModel model, int projectivize = 0):
 | 
						|
        self.moves = transition_system
 | 
						|
        self.model = model
 | 
						|
        self._projectivize = projectivize
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def from_dir(cls, model_dir, strings, transition_system):
 | 
						|
        if not os.path.exists(model_dir):
 | 
						|
            print >> sys.stderr, "Warning: No model found at", model_dir
 | 
						|
        elif not os.path.isdir(model_dir):
 | 
						|
            print >> sys.stderr, "Warning: model path:", model_dir, "is not a directory"
 | 
						|
        cfg = Config.read(model_dir, 'config')
 | 
						|
        moves = transition_system(strings, cfg.labels)
 | 
						|
        templates = get_templates(cfg.features)
 | 
						|
        model = ParserModel(templates)
 | 
						|
        project = cfg.projectivize if hasattr(cfg,'projectivize') else False
 | 
						|
        if path.exists(path.join(model_dir, 'model')):
 | 
						|
            model.load(path.join(model_dir, 'model'))
 | 
						|
        return cls(strings, moves, model, project)
 | 
						|
 | 
						|
    @classmethod
 | 
						|
    def load(cls, pkg_or_str_or_file, vocab):
 | 
						|
        # TODO
 | 
						|
        raise NotImplementedError(
 | 
						|
                "This should be here, but isn't yet =/. Use Parser.from_dir")
 | 
						|
 | 
						|
    def __reduce__(self):
 | 
						|
        return (Parser, (self.moves.strings, self.moves, self.model), None, None)
 | 
						|
 | 
						|
    def __call__(self, Doc tokens):
 | 
						|
        cdef int nr_class = self.moves.n_moves
 | 
						|
        cdef int nr_feat = self.model.nr_feat
 | 
						|
        with nogil:
 | 
						|
            self.parseC(tokens.c, tokens.length, nr_feat, nr_class)
 | 
						|
        # Check for KeyboardInterrupt etc. Untested
 | 
						|
        PyErr_CheckSignals()
 | 
						|
        self.moves.finalize_doc(tokens)
 | 
						|
 | 
						|
    def pipe(self, stream, int batch_size=1000, int n_threads=2):
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef TokenC** doc_ptr = <TokenC**>mem.alloc(batch_size, sizeof(TokenC*))
 | 
						|
        cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
 | 
						|
        cdef Doc doc
 | 
						|
        cdef int i
 | 
						|
        cdef int nr_class = self.moves.n_moves
 | 
						|
        cdef int nr_feat = self.model.nr_feat
 | 
						|
        cdef int status
 | 
						|
        queue = []
 | 
						|
        for doc in stream:
 | 
						|
            doc_ptr[len(queue)] = doc.c
 | 
						|
            lengths[len(queue)] = doc.length
 | 
						|
            queue.append(doc)
 | 
						|
            if len(queue) == batch_size:
 | 
						|
                with nogil:
 | 
						|
                    for i in cython.parallel.prange(batch_size, num_threads=n_threads):
 | 
						|
                        status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
 | 
						|
                        if status != 0:
 | 
						|
                            with gil:
 | 
						|
                                sent_str = queue[i].text
 | 
						|
                                raise ValueError("Error parsing doc: %s" % sent_str)
 | 
						|
                PyErr_CheckSignals()
 | 
						|
                for doc in queue:
 | 
						|
                    self.moves.finalize_doc(doc)
 | 
						|
                    yield doc
 | 
						|
                queue = []
 | 
						|
        batch_size = len(queue)
 | 
						|
        with nogil:
 | 
						|
            for i in cython.parallel.prange(batch_size, num_threads=n_threads):
 | 
						|
                status = self.parseC(doc_ptr[i], lengths[i], nr_feat, nr_class)
 | 
						|
                if status != 0:
 | 
						|
                    with gil:
 | 
						|
                        sent_str = queue[i].text
 | 
						|
                        raise ValueError("Error parsing doc: %s" % sent_str)
 | 
						|
        PyErr_CheckSignals()
 | 
						|
        for doc in queue:
 | 
						|
            self.moves.finalize_doc(doc)
 | 
						|
            yield doc
 | 
						|
 | 
						|
    cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) nogil:
 | 
						|
        cdef ExampleC eg
 | 
						|
        eg.nr_feat = nr_feat
 | 
						|
        eg.nr_atom = CONTEXT_SIZE
 | 
						|
        eg.nr_class = nr_class
 | 
						|
        eg.features = <FeatureC*>calloc(sizeof(FeatureC), nr_feat)
 | 
						|
        eg.atoms = <atom_t*>calloc(sizeof(atom_t), CONTEXT_SIZE)
 | 
						|
        eg.scores = <weight_t*>calloc(sizeof(weight_t), nr_class)
 | 
						|
        eg.is_valid = <int*>calloc(sizeof(int), nr_class)
 | 
						|
        state = new StateC(tokens, length)
 | 
						|
        self.moves.initialize_state(state)
 | 
						|
        cdef int i
 | 
						|
        while not state.is_final():
 | 
						|
            self.model.set_featuresC(&eg, state)
 | 
						|
            self.moves.set_valid(eg.is_valid, state)
 | 
						|
            self.model.set_scoresC(eg.scores, eg.features, eg.nr_feat)
 | 
						|
 | 
						|
            guess = VecVec.arg_max_if_true(eg.scores, eg.is_valid, eg.nr_class)
 | 
						|
 | 
						|
            action = self.moves.c[guess]
 | 
						|
            if not eg.is_valid[guess]:
 | 
						|
                # with gil:
 | 
						|
                #     move_name = self.moves.move_name(action.move, action.label)
 | 
						|
                #     print 'invalid action:', move_name
 | 
						|
                return 1
 | 
						|
 | 
						|
            action.do(state, action.label)
 | 
						|
            memset(eg.scores, 0, sizeof(eg.scores[0]) * eg.nr_class)
 | 
						|
            for i in range(eg.nr_class):
 | 
						|
                eg.is_valid[i] = 1
 | 
						|
        self.moves.finalize_state(state)
 | 
						|
        for i in range(length):
 | 
						|
            tokens[i] = state._sent[i]
 | 
						|
        del state
 | 
						|
        free(eg.features)
 | 
						|
        free(eg.atoms)
 | 
						|
        free(eg.scores)
 | 
						|
        free(eg.is_valid)
 | 
						|
        return 0
 | 
						|
  
 | 
						|
    def train(self, Doc tokens, GoldParse gold):
 | 
						|
        self.moves.preprocess_gold(gold)
 | 
						|
        cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
 | 
						|
        self.moves.initialize_state(stcls.c)
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef Example eg = Example(
 | 
						|
                nr_class=self.moves.n_moves,
 | 
						|
                nr_atom=CONTEXT_SIZE,
 | 
						|
                nr_feat=self.model.nr_feat)
 | 
						|
        cdef weight_t loss = 0
 | 
						|
        cdef Transition action
 | 
						|
        while not stcls.is_final():
 | 
						|
            self.model.set_featuresC(&eg.c, stcls.c)
 | 
						|
            self.moves.set_costs(eg.c.is_valid, eg.c.costs, stcls, gold)
 | 
						|
            self.model.set_scoresC(eg.c.scores, eg.c.features, eg.c.nr_feat)
 | 
						|
            self.model.updateC(&eg.c)
 | 
						|
            guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
 | 
						|
 | 
						|
            action = self.moves.c[eg.guess]
 | 
						|
            action.do(stcls.c, action.label)
 | 
						|
            loss += eg.costs[eg.guess]
 | 
						|
            eg.fill_scores(0, eg.nr_class)
 | 
						|
            eg.fill_costs(0, eg.nr_class)
 | 
						|
            eg.fill_is_valid(0, eg.nr_class)
 | 
						|
        return loss
 | 
						|
 | 
						|
    def step_through(self, Doc doc):
 | 
						|
        return StepwiseState(self, doc)
 | 
						|
 | 
						|
    def add_label(self, label):
 | 
						|
        for action in self.moves.action_types:
 | 
						|
            self.moves.add_action(action, label)
 | 
						|
 | 
						|
 | 
						|
cdef class StepwiseState:
 | 
						|
    cdef readonly StateClass stcls
 | 
						|
    cdef readonly Example eg
 | 
						|
    cdef readonly Doc doc
 | 
						|
    cdef readonly Parser parser
 | 
						|
 | 
						|
    def __init__(self, Parser parser, Doc doc):
 | 
						|
        self.parser = parser
 | 
						|
        self.doc = doc
 | 
						|
        self.stcls = StateClass.init(doc.c, doc.length)
 | 
						|
        self.parser.moves.initialize_state(self.stcls.c)
 | 
						|
        self.eg = Example(
 | 
						|
            nr_class=self.parser.moves.n_moves,
 | 
						|
            nr_atom=CONTEXT_SIZE,
 | 
						|
            nr_feat=self.parser.model.nr_feat)
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        return self
 | 
						|
 | 
						|
    def __exit__(self, type, value, traceback):
 | 
						|
        self.finish()
 | 
						|
 | 
						|
    @property
 | 
						|
    def is_final(self):
 | 
						|
        return self.stcls.is_final()
 | 
						|
 | 
						|
    @property
 | 
						|
    def stack(self):
 | 
						|
        return self.stcls.stack
 | 
						|
 | 
						|
    @property
 | 
						|
    def queue(self):
 | 
						|
        return self.stcls.queue
 | 
						|
 | 
						|
    @property
 | 
						|
    def heads(self):
 | 
						|
        return [self.stcls.H(i) for i in range(self.stcls.c.length)]
 | 
						|
 | 
						|
    @property
 | 
						|
    def deps(self):
 | 
						|
        return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
 | 
						|
                for i in range(self.stcls.c.length)]
 | 
						|
 | 
						|
    def predict(self):
 | 
						|
        self.eg.reset()
 | 
						|
        self.parser.model.set_featuresC(&self.eg.c, self.stcls.c)
 | 
						|
        self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
 | 
						|
        self.parser.model.set_scoresC(self.eg.c.scores,
 | 
						|
            self.eg.c.features, self.eg.c.nr_feat)
 | 
						|
 | 
						|
        cdef Transition action = self.parser.moves.c[self.eg.guess]
 | 
						|
        return self.parser.moves.move_name(action.move, action.label)
 | 
						|
 | 
						|
    def transition(self, action_name):
 | 
						|
        moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
 | 
						|
        if action_name == '_':
 | 
						|
            action_name = self.predict()
 | 
						|
            action = self.parser.moves.lookup_transition(action_name)
 | 
						|
        elif action_name == 'L' or action_name == 'R':
 | 
						|
            self.predict()
 | 
						|
            move = moves[action_name]
 | 
						|
            clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
 | 
						|
                                 self.eg.c.nr_class)
 | 
						|
            action = self.parser.moves.c[clas]
 | 
						|
        else:
 | 
						|
            action = self.parser.moves.lookup_transition(action_name)
 | 
						|
        action.do(self.stcls.c, action.label)
 | 
						|
 | 
						|
    def finish(self):
 | 
						|
        if self.stcls.is_final():
 | 
						|
            self.parser.moves.finalize_state(self.stcls.c)
 | 
						|
        self.doc.set_parse(self.stcls.c._sent)
 | 
						|
        self.parser.moves.finalize_doc(self.doc)
 | 
						|
 | 
						|
 | 
						|
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
 | 
						|
                       int nr_class) except -1:
 | 
						|
    cdef weight_t score = 0
 | 
						|
    cdef int mode = -1
 | 
						|
    cdef int i
 | 
						|
    for i in range(nr_class):
 | 
						|
        if actions[i].move == move and (mode == -1 or scores[i] >= score):
 | 
						|
            mode = i
 | 
						|
            score = scores[i]
 | 
						|
    return mode
 |