mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	* Draft lower-case augmenter * Make warning a debug log * Update lowercase augmenter, docs and tests Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			101 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						||
from spacy.training import Corpus
 | 
						||
from spacy.training.augment import create_orth_variants_augmenter
 | 
						||
from spacy.training.augment import create_lower_casing_augmenter
 | 
						||
from spacy.lang.en import English
 | 
						||
from spacy.tokens import DocBin, Doc
 | 
						||
from contextlib import contextmanager
 | 
						||
import random
 | 
						||
 | 
						||
from ..util import make_tempdir
 | 
						||
 | 
						||
 | 
						||
@contextmanager
 | 
						||
def make_docbin(docs, name="roundtrip.spacy"):
 | 
						||
    with make_tempdir() as tmpdir:
 | 
						||
        output_file = tmpdir / name
 | 
						||
        DocBin(docs=docs).to_disk(output_file)
 | 
						||
        yield output_file
 | 
						||
 | 
						||
 | 
						||
@pytest.fixture
 | 
						||
def nlp():
 | 
						||
    return English()
 | 
						||
 | 
						||
 | 
						||
@pytest.fixture
 | 
						||
def doc(nlp):
 | 
						||
    # fmt: off
 | 
						||
    words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
 | 
						||
    tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | 
						||
    pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
 | 
						||
    ents = ["B-PERSON", "I-PERSON", "O", "O", "O", "B-LOC", "I-LOC", "O", "B-GPE", "O"]
 | 
						||
    cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | 
						||
    # fmt: on
 | 
						||
    doc = Doc(nlp.vocab, words=words, tags=tags, pos=pos, ents=ents)
 | 
						||
    doc.cats = cats
 | 
						||
    return doc
 | 
						||
 | 
						||
 | 
						||
@pytest.mark.filterwarnings("ignore::UserWarning")
 | 
						||
def test_make_orth_variants(nlp, doc):
 | 
						||
    single = [
 | 
						||
        {"tags": ["NFP"], "variants": ["…", "..."]},
 | 
						||
        {"tags": [":"], "variants": ["-", "—", "–", "--", "---", "——"]},
 | 
						||
    ]
 | 
						||
    augmenter = create_orth_variants_augmenter(
 | 
						||
        level=0.2, lower=0.5, orth_variants={"single": single}
 | 
						||
    )
 | 
						||
    with make_docbin([doc]) as output_file:
 | 
						||
        reader = Corpus(output_file, augmenter=augmenter)
 | 
						||
        # Due to randomness, only test that it works without errors for now
 | 
						||
        list(reader(nlp))
 | 
						||
 | 
						||
 | 
						||
def test_lowercase_augmenter(nlp, doc):
 | 
						||
    augmenter = create_lower_casing_augmenter(level=1.0)
 | 
						||
    with make_docbin([doc]) as output_file:
 | 
						||
        reader = Corpus(output_file, augmenter=augmenter)
 | 
						||
        corpus = list(reader(nlp))
 | 
						||
    eg = corpus[0]
 | 
						||
    assert eg.reference.text == doc.text.lower()
 | 
						||
    assert eg.predicted.text == doc.text.lower()
 | 
						||
    ents = [(e.start, e.end, e.label) for e in doc.ents]
 | 
						||
    assert [(e.start, e.end, e.label) for e in eg.reference.ents] == ents
 | 
						||
    for ref_ent, orig_ent in zip(eg.reference.ents, doc.ents):
 | 
						||
        assert ref_ent.text == orig_ent.text.lower()
 | 
						||
    assert [t.pos_ for t in eg.reference] == [t.pos_ for t in doc]
 | 
						||
 | 
						||
 | 
						||
@pytest.mark.filterwarnings("ignore::UserWarning")
 | 
						||
def test_custom_data_augmentation(nlp, doc):
 | 
						||
    def create_spongebob_augmenter(randomize: bool = False):
 | 
						||
        def augment(nlp, example):
 | 
						||
            text = example.text
 | 
						||
            if randomize:
 | 
						||
                ch = [c.lower() if random.random() < 0.5 else c.upper() for c in text]
 | 
						||
            else:
 | 
						||
                ch = [c.lower() if i % 2 else c.upper() for i, c in enumerate(text)]
 | 
						||
            example_dict = example.to_dict()
 | 
						||
            doc = nlp.make_doc("".join(ch))
 | 
						||
            example_dict["token_annotation"]["ORTH"] = [t.text for t in doc]
 | 
						||
            yield example
 | 
						||
            yield example.from_dict(doc, example_dict)
 | 
						||
 | 
						||
        return augment
 | 
						||
 | 
						||
    with make_docbin([doc]) as output_file:
 | 
						||
        reader = Corpus(output_file, augmenter=create_spongebob_augmenter())
 | 
						||
        corpus = list(reader(nlp))
 | 
						||
    orig_text = "Sarah 's sister flew to Silicon Valley via London . "
 | 
						||
    augmented = "SaRaH 's sIsTeR FlEw tO SiLiCoN VaLlEy vIa lOnDoN . "
 | 
						||
    assert corpus[0].text == orig_text
 | 
						||
    assert corpus[0].reference.text == orig_text
 | 
						||
    assert corpus[0].predicted.text == orig_text
 | 
						||
    assert corpus[1].text == augmented
 | 
						||
    assert corpus[1].reference.text == augmented
 | 
						||
    assert corpus[1].predicted.text == augmented
 | 
						||
    ents = [(e.start, e.end, e.label) for e in doc.ents]
 | 
						||
    assert [(e.start, e.end, e.label) for e in corpus[0].reference.ents] == ents
 | 
						||
    assert [(e.start, e.end, e.label) for e in corpus[1].reference.ents] == ents
 |