mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 17:26:42 +03:00
0ba1b5eebc
* document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
75 lines
2.5 KiB
Python
75 lines
2.5 KiB
Python
# coding: utf-8
|
|
from __future__ import unicode_literals
|
|
|
|
from ..util import make_tempdir
|
|
from ...util import ensure_path
|
|
|
|
from spacy.kb import KnowledgeBase
|
|
|
|
|
|
def test_serialize_kb_disk(en_vocab):
|
|
# baseline assertions
|
|
kb1 = _get_dummy_kb(en_vocab)
|
|
_check_kb(kb1)
|
|
|
|
# dumping to file & loading back in
|
|
with make_tempdir() as d:
|
|
dir_path = ensure_path(d)
|
|
if not dir_path.exists():
|
|
dir_path.mkdir()
|
|
file_path = dir_path / "kb"
|
|
kb1.dump(str(file_path))
|
|
|
|
kb2 = KnowledgeBase(vocab=en_vocab, entity_vector_length=3)
|
|
kb2.load_bulk(str(file_path))
|
|
|
|
# final assertions
|
|
_check_kb(kb2)
|
|
|
|
|
|
def _get_dummy_kb(vocab):
|
|
kb = KnowledgeBase(vocab=vocab, entity_vector_length=3)
|
|
|
|
kb.add_entity(entity='Q53', freq=33, entity_vector=[0, 5, 3])
|
|
kb.add_entity(entity='Q17', freq=2, entity_vector=[7, 1, 0])
|
|
kb.add_entity(entity='Q007', freq=7, entity_vector=[0, 0, 7])
|
|
kb.add_entity(entity='Q44', freq=342, entity_vector=[4, 4, 4])
|
|
|
|
kb.add_alias(alias='double07', entities=['Q17', 'Q007'], probabilities=[0.1, 0.9])
|
|
kb.add_alias(alias='guy', entities=['Q53', 'Q007', 'Q17', 'Q44'], probabilities=[0.3, 0.3, 0.2, 0.1])
|
|
kb.add_alias(alias='random', entities=['Q007'], probabilities=[1.0])
|
|
|
|
return kb
|
|
|
|
|
|
def _check_kb(kb):
|
|
# check entities
|
|
assert kb.get_size_entities() == 4
|
|
for entity_string in ['Q53', 'Q17', 'Q007', 'Q44']:
|
|
assert entity_string in kb.get_entity_strings()
|
|
for entity_string in ['', 'Q0']:
|
|
assert entity_string not in kb.get_entity_strings()
|
|
|
|
# check aliases
|
|
assert kb.get_size_aliases() == 3
|
|
for alias_string in ['double07', 'guy', 'random']:
|
|
assert alias_string in kb.get_alias_strings()
|
|
for alias_string in ['nothingness', '', 'randomnoise']:
|
|
assert alias_string not in kb.get_alias_strings()
|
|
|
|
# check candidates & probabilities
|
|
candidates = sorted(kb.get_candidates('double07'), key=lambda x: x.entity_)
|
|
assert len(candidates) == 2
|
|
|
|
assert candidates[0].entity_ == 'Q007'
|
|
assert 6.999 < candidates[0].entity_freq < 7.01
|
|
assert candidates[0].entity_vector == [0, 0, 7]
|
|
assert candidates[0].alias_ == 'double07'
|
|
assert 0.899 < candidates[0].prior_prob < 0.901
|
|
|
|
assert candidates[1].entity_ == 'Q17'
|
|
assert 1.99 < candidates[1].entity_freq < 2.01
|
|
assert candidates[1].entity_vector == [7, 1, 0]
|
|
assert candidates[1].alias_ == 'double07'
|
|
assert 0.099 < candidates[1].prior_prob < 0.101
|