mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			192 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			192 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding: utf8
 | |
| """Train a convolutional neural network text classifier on the
 | |
| IMDB dataset, using the TextCategorizer component. The dataset will be loaded
 | |
| automatically via the package `ml_datasets`. The model is added to
 | |
| spacy.pipeline, and predictions are available via `doc.cats`. For more details,
 | |
| see the documentation:
 | |
| * Training: https://spacy.io/usage/training
 | |
| 
 | |
| Compatible with: spaCy v3.0.0+
 | |
| """
 | |
| from __future__ import unicode_literals, print_function
 | |
| 
 | |
| import plac
 | |
| import random
 | |
| from pathlib import Path
 | |
| from ml_datasets import loaders
 | |
| 
 | |
| import spacy
 | |
| from spacy import util
 | |
| from spacy.util import minibatch, compounding
 | |
| from spacy.gold import Example
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     config_path=("Path to config file", "positional", None, Path),
 | |
|     output_dir=("Optional output directory", "option", "o", Path),
 | |
|     n_texts=("Number of texts to train from", "option", "t", int),
 | |
|     n_iter=("Number of training iterations", "option", "n", int),
 | |
|     init_tok2vec=("Pretrained tok2vec weights", "option", "t2v", Path),
 | |
|     dataset=("Dataset to train on (default: imdb)", "option", "d", str),
 | |
|     threshold=("Min. number of instances for a given label (default 20)", "option", "m", int)
 | |
| )
 | |
| def main(config_path, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None, dataset="imdb", threshold=20):
 | |
|     if not config_path or not config_path.exists():
 | |
|         raise ValueError(f"Config file not found at {config_path}")
 | |
| 
 | |
|     spacy.util.fix_random_seed()
 | |
|     if output_dir is not None:
 | |
|         output_dir = Path(output_dir)
 | |
|         if not output_dir.exists():
 | |
|             output_dir.mkdir()
 | |
| 
 | |
|     print(f"Loading nlp model from {config_path}")
 | |
|     nlp_config = util.load_config(config_path, create_objects=False)["nlp"]
 | |
|     nlp = util.load_model_from_config(nlp_config)
 | |
| 
 | |
|     # ensure the nlp object was defined with a textcat component
 | |
|     if "textcat" not in nlp.pipe_names:
 | |
|         raise ValueError(f"The nlp definition in the config does not contain a textcat component")
 | |
| 
 | |
|     textcat = nlp.get_pipe("textcat")
 | |
| 
 | |
|     # load the dataset
 | |
|     print(f"Loading dataset {dataset} ...")
 | |
|     (train_texts, train_cats), (dev_texts, dev_cats) = load_data(dataset=dataset, threshold=threshold, limit=n_texts)
 | |
|     print(
 | |
|         "Using {} examples ({} training, {} evaluation)".format(
 | |
|             n_texts, len(train_texts), len(dev_texts)
 | |
|         )
 | |
|     )
 | |
|     train_examples = []
 | |
|     for text, cats in zip(train_texts, train_cats):
 | |
|         doc = nlp.make_doc(text)
 | |
|         example = Example.from_dict(doc, {"cats": cats})
 | |
|         for cat in cats:
 | |
|             textcat.add_label(cat)
 | |
|         train_examples.append(example)
 | |
| 
 | |
|     with nlp.select_pipes(enable="textcat"):  # only train textcat
 | |
|         optimizer = nlp.begin_training()
 | |
|         if init_tok2vec is not None:
 | |
|             with init_tok2vec.open("rb") as file_:
 | |
|                 textcat.model.get_ref("tok2vec").from_bytes(file_.read())
 | |
|         print("Training the model...")
 | |
|         print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
 | |
|         batch_sizes = compounding(4.0, 32.0, 1.001)
 | |
|         for i in range(n_iter):
 | |
|             losses = {}
 | |
|             # batch up the examples using spaCy's minibatch
 | |
|             random.shuffle(train_examples)
 | |
|             batches = minibatch(train_examples, size=batch_sizes)
 | |
|             for batch in batches:
 | |
|                 nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses)
 | |
|             with textcat.model.use_params(optimizer.averages):
 | |
|                 # evaluate on the dev data split off in load_data()
 | |
|                 scores = evaluate(nlp.tokenizer, textcat, dev_texts, dev_cats)
 | |
|             print(
 | |
|                 "{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format(  # print a simple table
 | |
|                     losses["textcat"],
 | |
|                     scores["textcat_p"],
 | |
|                     scores["textcat_r"],
 | |
|                     scores["textcat_f"],
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|     # test the trained model (only makes sense for sentiment analysis)
 | |
|     test_text = "This movie sucked"
 | |
|     doc = nlp(test_text)
 | |
|     print(test_text, doc.cats)
 | |
| 
 | |
|     if output_dir is not None:
 | |
|         with nlp.use_params(optimizer.averages):
 | |
|             nlp.to_disk(output_dir)
 | |
|         print("Saved model to", output_dir)
 | |
| 
 | |
|         # test the saved model
 | |
|         print("Loading from", output_dir)
 | |
|         nlp2 = spacy.load(output_dir)
 | |
|         doc2 = nlp2(test_text)
 | |
|         print(test_text, doc2.cats)
 | |
| 
 | |
| 
 | |
| def load_data(dataset, threshold, limit=0, split=0.8):
 | |
|     """Load data from the provided dataset."""
 | |
|     # Partition off part of the train data for evaluation
 | |
|     data_loader = loaders.get(dataset)
 | |
|     train_data, _ = data_loader(limit=int(limit/split))
 | |
|     random.shuffle(train_data)
 | |
|     texts, labels = zip(*train_data)
 | |
| 
 | |
|     unique_labels = set()
 | |
|     for label_set in labels:
 | |
|         if isinstance(label_set, int) or isinstance(label_set, str):
 | |
|             unique_labels.add(label_set)
 | |
|         elif isinstance(label_set, list) or isinstance(label_set, set):
 | |
|             unique_labels.update(label_set)
 | |
|     unique_labels = sorted(unique_labels)
 | |
|     print(f"# of unique_labels: {len(unique_labels)}")
 | |
| 
 | |
|     count_values_train = dict()
 | |
|     for text, annot_list in train_data:
 | |
|         if isinstance(annot_list, int) or isinstance(annot_list, str):
 | |
|             count_values_train[annot_list] = count_values_train.get(annot_list, 0) + 1
 | |
|         else:
 | |
|             for annot in annot_list:
 | |
|                 count_values_train[annot] = count_values_train.get(annot, 0) + 1
 | |
|     for value, count in sorted(count_values_train.items(), key=lambda item: item[1]):
 | |
|         if count < threshold:
 | |
|             unique_labels.remove(value)
 | |
| 
 | |
|     print(f"# of unique_labels after filtering with threshold {threshold}: {len(unique_labels)}")
 | |
| 
 | |
|     if unique_labels == {0, 1}:
 | |
|         cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
 | |
|     else:
 | |
|         cats = []
 | |
|         for y in labels:
 | |
|             if isinstance(y, str) or isinstance(y, int):
 | |
|                 cats.append({str(label): (label == y) for label in unique_labels})
 | |
|             elif isinstance(y, set):
 | |
|                 cats.append({str(label): (label in y) for label in unique_labels})
 | |
|             else:
 | |
|                 raise ValueError(f"Unrecognised type of labels: {type(y)}")
 | |
| 
 | |
|     split = int(len(train_data) * split)
 | |
|     return (texts[:split], cats[:split]), (texts[split:], cats[split:])
 | |
| 
 | |
| 
 | |
| def evaluate(tokenizer, textcat, texts, cats):
 | |
|     docs = (tokenizer(text) for text in texts)
 | |
|     tp = 0.0  # True positives
 | |
|     fp = 1e-8  # False positives
 | |
|     fn = 1e-8  # False negatives
 | |
|     tn = 0.0  # True negatives
 | |
|     for i, doc in enumerate(textcat.pipe(docs)):
 | |
|         gold = cats[i]
 | |
|         for label, score in doc.cats.items():
 | |
|             if label not in gold:
 | |
|                 continue
 | |
|             if label == "NEGATIVE":
 | |
|                 continue
 | |
|             if score >= 0.5 and gold[label] >= 0.5:
 | |
|                 tp += 1.0
 | |
|             elif score >= 0.5 and gold[label] < 0.5:
 | |
|                 fp += 1.0
 | |
|             elif score < 0.5 and gold[label] < 0.5:
 | |
|                 tn += 1
 | |
|             elif score < 0.5 and gold[label] >= 0.5:
 | |
|                 fn += 1
 | |
|     precision = tp / (tp + fp)
 | |
|     recall = tp / (tp + fn)
 | |
|     if (precision + recall) == 0:
 | |
|         f_score = 0.0
 | |
|     else:
 | |
|         f_score = 2 * (precision * recall) / (precision + recall)
 | |
|     return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     plac.call(main)
 |