spaCy/spacy/pipeline/functions.py
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module (#12721)
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

204 lines
6.5 KiB
Python

import warnings
from typing import Any, Dict
import srsly
from .. import util
from ..errors import Warnings
from ..language import Language
from ..matcher import Matcher
from ..tokens import Doc
@Language.component(
"merge_noun_chunks",
requires=["token.dep", "token.tag", "token.pos"],
retokenizes=True,
)
def merge_noun_chunks(doc: Doc) -> Doc:
"""Merge noun chunks into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged noun chunks.
DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks
"""
if not doc.has_annotation("DEP"):
return doc
with doc.retokenize() as retokenizer:
for np in doc.noun_chunks:
attrs = {"tag": np.root.tag, "dep": np.root.dep}
retokenizer.merge(np, attrs=attrs) # type: ignore[arg-type]
return doc
@Language.component(
"merge_entities",
requires=["doc.ents", "token.ent_iob", "token.ent_type"],
retokenizes=True,
)
def merge_entities(doc: Doc):
"""Merge entities into a single token.
doc (Doc): The Doc object.
RETURNS (Doc): The Doc object with merged entities.
DOCS: https://spacy.io/api/pipeline-functions#merge_entities
"""
with doc.retokenize() as retokenizer:
for ent in doc.ents:
attrs = {"tag": ent.root.tag, "dep": ent.root.dep, "ent_type": ent.label}
retokenizer.merge(ent, attrs=attrs) # type: ignore[arg-type]
return doc
@Language.component("merge_subtokens", requires=["token.dep"], retokenizes=True)
def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
"""Merge subtokens into a single token.
doc (Doc): The Doc object.
label (str): The subtoken dependency label.
RETURNS (Doc): The Doc object with merged subtokens.
DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens
"""
# TODO: make stateful component with "label" config
merger = Matcher(doc.vocab)
merger.add("SUBTOK", [[{"DEP": label, "op": "+"}]])
matches = merger(doc)
spans = util.filter_spans([doc[start : end + 1] for _, start, end in matches]) # type: ignore[misc, operator]
with doc.retokenize() as retokenizer:
for span in spans:
retokenizer.merge(span)
return doc
@Language.factory(
"token_splitter",
default_config={"min_length": 25, "split_length": 10},
retokenizes=True,
)
def make_token_splitter(
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
):
return TokenSplitter(min_length=min_length, split_length=split_length)
class TokenSplitter:
def __init__(self, min_length: int = 0, split_length: int = 0):
self.min_length = min_length
self.split_length = split_length
def __call__(self, doc: Doc) -> Doc:
if self.min_length > 0 and self.split_length > 0:
with doc.retokenize() as retokenizer:
for t in doc:
if len(t.text) >= self.min_length:
orths = []
heads = []
attrs = {} # type: ignore[var-annotated]
for i in range(0, len(t.text), self.split_length):
orths.append(t.text[i : i + self.split_length])
heads.append((t, i / self.split_length))
retokenizer.split(t, orths, heads, attrs) # type: ignore[arg-type]
return doc
def _get_config(self) -> Dict[str, Any]:
return {
"min_length": self.min_length,
"split_length": self.split_length,
}
def _set_config(self, config: Dict[str, Any] = {}) -> None:
self.min_length = config.get("min_length", 0)
self.split_length = config.get("split_length", 0)
def to_bytes(self, **kwargs):
serializers = {
"cfg": lambda: srsly.json_dumps(self._get_config()),
}
return util.to_bytes(serializers, [])
def from_bytes(self, data, **kwargs):
deserializers = {
"cfg": lambda b: self._set_config(srsly.json_loads(b)),
}
util.from_bytes(data, deserializers, [])
return self
def to_disk(self, path, **kwargs):
path = util.ensure_path(path)
serializers = {
"cfg": lambda p: srsly.write_json(p, self._get_config()),
}
return util.to_disk(path, serializers, [])
def from_disk(self, path, **kwargs):
path = util.ensure_path(path)
serializers = {
"cfg": lambda p: self._set_config(srsly.read_json(p)),
}
util.from_disk(path, serializers, [])
@Language.factory(
"doc_cleaner",
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
)
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
return DocCleaner(attrs, silent=silent)
class DocCleaner:
def __init__(self, attrs: Dict[str, Any], *, silent: bool = True):
self.cfg: Dict[str, Any] = {"attrs": dict(attrs), "silent": silent}
def __call__(self, doc: Doc) -> Doc:
attrs: dict = self.cfg["attrs"]
silent: bool = self.cfg["silent"]
for attr, value in attrs.items():
obj = doc
parts = attr.split(".")
skip = False
for part in parts[:-1]:
if hasattr(obj, part):
obj = getattr(obj, part)
else:
skip = True
if not silent:
warnings.warn(Warnings.W116.format(attr=attr))
if not skip:
if hasattr(obj, parts[-1]):
setattr(obj, parts[-1], value)
else:
if not silent:
warnings.warn(Warnings.W116.format(attr=attr))
return doc
def to_bytes(self, **kwargs):
serializers = {
"cfg": lambda: srsly.json_dumps(self.cfg),
}
return util.to_bytes(serializers, [])
def from_bytes(self, data, **kwargs):
deserializers = {
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
}
util.from_bytes(data, deserializers, [])
return self
def to_disk(self, path, **kwargs):
path = util.ensure_path(path)
serializers = {
"cfg": lambda p: srsly.write_json(p, self.cfg),
}
return util.to_disk(path, serializers, [])
def from_disk(self, path, **kwargs):
path = util.ensure_path(path)
serializers = {
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
}
util.from_disk(path, serializers, [])