mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf-8
 | 
						|
from __future__ import unicode_literals
 | 
						|
 | 
						|
from ..util import ensure_path
 | 
						|
from .. import util
 | 
						|
from ..displacy import parse_deps, parse_ents
 | 
						|
from ..tokens import Span
 | 
						|
from .util import get_doc
 | 
						|
from .._ml import PrecomputableAffine
 | 
						|
 | 
						|
from pathlib import Path
 | 
						|
import pytest
 | 
						|
from thinc.neural._classes.maxout import Maxout
 | 
						|
from thinc.neural._classes.softmax import Softmax
 | 
						|
from thinc.api import chain
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('text', ['hello/world', 'hello world'])
 | 
						|
def test_util_ensure_path_succeeds(text):
 | 
						|
    path = util.ensure_path(text)
 | 
						|
    assert isinstance(path, Path)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('package', ['numpy'])
 | 
						|
def test_util_is_package(package):
 | 
						|
    """Test that an installed package via pip is recognised by util.is_package."""
 | 
						|
    assert util.is_package(package)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize('package', ['thinc'])
 | 
						|
def test_util_get_package_path(package):
 | 
						|
    """Test that a Path object is returned for a package name."""
 | 
						|
    path = util.get_package_path(package)
 | 
						|
    assert isinstance(path, Path)
 | 
						|
 | 
						|
 | 
						|
def test_displacy_parse_ents(en_vocab):
 | 
						|
    """Test that named entities on a Doc are converted into displaCy's format."""
 | 
						|
    doc = get_doc(en_vocab, words=["But", "Google", "is", "starting", "from", "behind"])
 | 
						|
    doc.ents = [Span(doc, 1, 2, label=doc.vocab.strings[u'ORG'])]
 | 
						|
    ents = parse_ents(doc)
 | 
						|
    assert isinstance(ents, dict)
 | 
						|
    assert ents['text'] == 'But Google is starting from behind '
 | 
						|
    assert ents['ents'] == [{'start': 4, 'end': 10, 'label': 'ORG'}]
 | 
						|
 | 
						|
 | 
						|
def test_displacy_parse_deps(en_vocab):
 | 
						|
    """Test that deps and tags on a Doc are converted into displaCy's format."""
 | 
						|
    words = ["This", "is", "a", "sentence"]
 | 
						|
    heads = [1, 0, 1, -2]
 | 
						|
    pos = ['DET', 'VERB', 'DET', 'NOUN']
 | 
						|
    tags = ['DT', 'VBZ', 'DT', 'NN']
 | 
						|
    deps = ['nsubj', 'ROOT', 'det', 'attr']
 | 
						|
    doc = get_doc(en_vocab, words=words, heads=heads, pos=pos, tags=tags,
 | 
						|
                  deps=deps)
 | 
						|
    deps = parse_deps(doc)
 | 
						|
    assert isinstance(deps, dict)
 | 
						|
    assert deps['words'] == [{'text': 'This', 'tag': 'DET'},
 | 
						|
                            {'text': 'is', 'tag': 'VERB'},
 | 
						|
                            {'text': 'a', 'tag': 'DET'},
 | 
						|
                            {'text': 'sentence', 'tag': 'NOUN'}]
 | 
						|
    assert deps['arcs'] == [{'start': 0, 'end': 1, 'label': 'nsubj', 'dir': 'left'},
 | 
						|
                            {'start': 2, 'end': 3, 'label': 'det', 'dir': 'left'},
 | 
						|
                            {'start': 1, 'end': 3, 'label': 'attr', 'dir': 'right'}]
 | 
						|
 | 
						|
 | 
						|
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
 | 
						|
    model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
 | 
						|
    assert model.W.shape == (nF, nO, nP, nI)
 | 
						|
    tensor = model.ops.allocate((10, nI))
 | 
						|
    Y, get_dX = model.begin_update(tensor)
 | 
						|
    assert Y.shape == (tensor.shape[0]+1, nF, nO, nP)
 | 
						|
    assert model.d_pad.shape == (1, nF, nO, nP)
 | 
						|
    dY = model.ops.allocate((15, nO, nP))
 | 
						|
    ids = model.ops.allocate((15, nF))
 | 
						|
    ids[1,2] = -1
 | 
						|
    dY[1] = 1
 | 
						|
    assert model.d_pad[0, 2, 0, 0] == 0.
 | 
						|
    model._backprop_padding(dY, ids)
 | 
						|
    assert model.d_pad[0, 2, 0, 0] == 1.
 | 
						|
    model.d_pad.fill(0.)
 | 
						|
    ids.fill(0.)
 | 
						|
    dY.fill(0.)
 | 
						|
    ids[1,2] = -1
 | 
						|
    ids[1,1] = -1
 | 
						|
    ids[1,0] = -1
 | 
						|
    dY[1] = 1
 | 
						|
    assert model.d_pad[0, 2, 0, 0] == 0.
 | 
						|
    model._backprop_padding(dY, ids)
 | 
						|
    assert model.d_pad[0, 2, 0, 0] == 3.
 |