mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			96 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals, division, print_function
 | |
| 
 | |
| import plac
 | |
| from timeit import default_timer as timer
 | |
| from wasabi import msg
 | |
| 
 | |
| from ..gold import GoldCorpus
 | |
| from .. import util
 | |
| from .. import displacy
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     model=("Model name or path", "positional", None, str),
 | |
|     data_path=("Location of JSON-formatted evaluation data", "positional", None, str),
 | |
|     gold_preproc=("Use gold preprocessing", "flag", "G", bool),
 | |
|     gpu_id=("Use GPU", "option", "g", int),
 | |
|     displacy_path=("Directory to output rendered parses as HTML", "option", "dp", str),
 | |
|     displacy_limit=("Limit of parses to render as HTML", "option", "dl", int),
 | |
|     return_scores=("Return dict containing model scores", "flag", "R", bool),
 | |
| )
 | |
| def evaluate(
 | |
|     model,
 | |
|     data_path,
 | |
|     gpu_id=-1,
 | |
|     gold_preproc=False,
 | |
|     displacy_path=None,
 | |
|     displacy_limit=25,
 | |
|     return_scores=False,
 | |
| ):
 | |
|     """
 | |
|     Evaluate a model. To render a sample of parses in a HTML file, set an
 | |
|     output directory as the displacy_path argument.
 | |
|     """
 | |
|     util.fix_random_seed()
 | |
|     if gpu_id >= 0:
 | |
|         util.use_gpu(gpu_id)
 | |
|     util.set_env_log(False)
 | |
|     data_path = util.ensure_path(data_path)
 | |
|     displacy_path = util.ensure_path(displacy_path)
 | |
|     if not data_path.exists():
 | |
|         msg.fail("Evaluation data not found", data_path, exits=1)
 | |
|     if displacy_path and not displacy_path.exists():
 | |
|         msg.fail("Visualization output directory not found", displacy_path, exits=1)
 | |
|     corpus = GoldCorpus(data_path, data_path)
 | |
|     nlp = util.load_model(model)
 | |
|     dev_docs = list(corpus.dev_docs(nlp, gold_preproc=gold_preproc))
 | |
|     begin = timer()
 | |
|     scorer = nlp.evaluate(dev_docs, verbose=False)
 | |
|     end = timer()
 | |
|     nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs)
 | |
|     results = {
 | |
|         "Time": "%.2f s" % (end - begin),
 | |
|         "Words": nwords,
 | |
|         "Words/s": "%.0f" % (nwords / (end - begin)),
 | |
|         "TOK": "%.2f" % scorer.token_acc,
 | |
|         "POS": "%.2f" % scorer.tags_acc,
 | |
|         "UAS": "%.2f" % scorer.uas,
 | |
|         "LAS": "%.2f" % scorer.las,
 | |
|         "NER P": "%.2f" % scorer.ents_p,
 | |
|         "NER R": "%.2f" % scorer.ents_r,
 | |
|         "NER F": "%.2f" % scorer.ents_f,
 | |
|         "Textcat": "%.2f" % scorer.textcat_score,
 | |
|     }
 | |
|     msg.table(results, title="Results")
 | |
| 
 | |
|     if displacy_path:
 | |
|         docs, golds = zip(*dev_docs)
 | |
|         render_deps = "parser" in nlp.meta.get("pipeline", [])
 | |
|         render_ents = "ner" in nlp.meta.get("pipeline", [])
 | |
|         render_parses(
 | |
|             docs,
 | |
|             displacy_path,
 | |
|             model_name=model,
 | |
|             limit=displacy_limit,
 | |
|             deps=render_deps,
 | |
|             ents=render_ents,
 | |
|         )
 | |
|         msg.good("Generated {} parses as HTML".format(displacy_limit), displacy_path)
 | |
|     if return_scores:
 | |
|         return scorer.scores
 | |
| 
 | |
| 
 | |
| def render_parses(docs, output_path, model_name="", limit=250, deps=True, ents=True):
 | |
|     docs[0].user_data["title"] = model_name
 | |
|     if ents:
 | |
|         html = displacy.render(docs[:limit], style="ent", page=True)
 | |
|         with (output_path / "entities.html").open("w", encoding="utf8") as file_:
 | |
|             file_.write(html)
 | |
|     if deps:
 | |
|         html = displacy.render(
 | |
|             docs[:limit], style="dep", page=True, options={"compact": True}
 | |
|         )
 | |
|         with (output_path / "parses.html").open("w", encoding="utf8") as file_:
 | |
|             file_.write(html)
 |