mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			284 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import plac
 | |
| import math
 | |
| import numpy
 | |
| from ast import literal_eval
 | |
| from pathlib import Path
 | |
| from preshed.counter import PreshCounter
 | |
| import tarfile
 | |
| import gzip
 | |
| import zipfile
 | |
| import srsly
 | |
| from wasabi import msg
 | |
| 
 | |
| from ..vectors import Vectors
 | |
| from ..errors import Errors, Warnings, user_warning
 | |
| from ..util import ensure_path, get_lang_class
 | |
| 
 | |
| try:
 | |
|     import ftfy
 | |
| except ImportError:
 | |
|     ftfy = None
 | |
| 
 | |
| 
 | |
| DEFAULT_OOV_PROB = -20
 | |
| 
 | |
| 
 | |
| @plac.annotations(
 | |
|     lang=("Model language", "positional", None, str),
 | |
|     output_dir=("Model output directory", "positional", None, Path),
 | |
|     freqs_loc=("Location of words frequencies file", "option", "f", Path),
 | |
|     jsonl_loc=("Location of JSONL-formatted attributes file", "option", "j", Path),
 | |
|     clusters_loc=("Optional location of brown clusters data", "option", "c", str),
 | |
|     vectors_loc=("Optional vectors file in Word2Vec format", "option", "v", str),
 | |
|     prune_vectors=("Optional number of vectors to prune to", "option", "V", int),
 | |
|     vectors_name=(
 | |
|         "Optional name for the word vectors, e.g. en_core_web_lg.vectors",
 | |
|         "option",
 | |
|         "vn",
 | |
|         str,
 | |
|     ),
 | |
|     model_name=("Optional name for the model meta", "option", "mn", str),
 | |
| )
 | |
| def init_model(
 | |
|     lang,
 | |
|     output_dir,
 | |
|     freqs_loc=None,
 | |
|     clusters_loc=None,
 | |
|     jsonl_loc=None,
 | |
|     vectors_loc=None,
 | |
|     prune_vectors=-1,
 | |
|     vectors_name=None,
 | |
|     model_name=None,
 | |
| ):
 | |
|     """
 | |
|     Create a new model from raw data, like word frequencies, Brown clusters
 | |
|     and word vectors. If vectors are provided in Word2Vec format, they can
 | |
|     be either a .txt or zipped as a .zip or .tar.gz.
 | |
|     """
 | |
|     if jsonl_loc is not None:
 | |
|         if freqs_loc is not None or clusters_loc is not None:
 | |
|             settings = ["-j"]
 | |
|             if freqs_loc:
 | |
|                 settings.append("-f")
 | |
|             if clusters_loc:
 | |
|                 settings.append("-c")
 | |
|             msg.warn(
 | |
|                 "Incompatible arguments",
 | |
|                 "The -f and -c arguments are deprecated, and not compatible "
 | |
|                 "with the -j argument, which should specify the same "
 | |
|                 "information. Either merge the frequencies and clusters data "
 | |
|                 "into the JSONL-formatted file (recommended), or use only the "
 | |
|                 "-f and -c files, without the other lexical attributes.",
 | |
|             )
 | |
|         jsonl_loc = ensure_path(jsonl_loc)
 | |
|         lex_attrs = srsly.read_jsonl(jsonl_loc)
 | |
|     else:
 | |
|         clusters_loc = ensure_path(clusters_loc)
 | |
|         freqs_loc = ensure_path(freqs_loc)
 | |
|         if freqs_loc is not None and not freqs_loc.exists():
 | |
|             msg.fail("Can't find words frequencies file", freqs_loc, exits=1)
 | |
|         lex_attrs = read_attrs_from_deprecated(freqs_loc, clusters_loc)
 | |
| 
 | |
|     with msg.loading("Creating model..."):
 | |
|         nlp = create_model(lang, lex_attrs, name=model_name)
 | |
|     msg.good("Successfully created model")
 | |
|     if vectors_loc is not None:
 | |
|         add_vectors(nlp, vectors_loc, prune_vectors, vectors_name)
 | |
|     vec_added = len(nlp.vocab.vectors)
 | |
|     lex_added = len(nlp.vocab)
 | |
|     msg.good(
 | |
|         "Sucessfully compiled vocab",
 | |
|         "{} entries, {} vectors".format(lex_added, vec_added),
 | |
|     )
 | |
|     if not output_dir.exists():
 | |
|         output_dir.mkdir()
 | |
|     nlp.to_disk(output_dir)
 | |
|     return nlp
 | |
| 
 | |
| 
 | |
| def open_file(loc):
 | |
|     """Handle .gz, .tar.gz or unzipped files"""
 | |
|     loc = ensure_path(loc)
 | |
|     if tarfile.is_tarfile(str(loc)):
 | |
|         return tarfile.open(str(loc), "r:gz")
 | |
|     elif loc.parts[-1].endswith("gz"):
 | |
|         return (line.decode("utf8") for line in gzip.open(str(loc), "r"))
 | |
|     elif loc.parts[-1].endswith("zip"):
 | |
|         zip_file = zipfile.ZipFile(str(loc))
 | |
|         names = zip_file.namelist()
 | |
|         file_ = zip_file.open(names[0])
 | |
|         return (line.decode("utf8") for line in file_)
 | |
|     else:
 | |
|         return loc.open("r", encoding="utf8")
 | |
| 
 | |
| 
 | |
| def read_attrs_from_deprecated(freqs_loc, clusters_loc):
 | |
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | |
|     from tqdm import tqdm
 | |
| 
 | |
|     if freqs_loc is not None:
 | |
|         with msg.loading("Counting frequencies..."):
 | |
|             probs, _ = read_freqs(freqs_loc)
 | |
|         msg.good("Counted frequencies")
 | |
|     else:
 | |
|         probs, _ = ({}, DEFAULT_OOV_PROB)  # noqa: F841
 | |
|     if clusters_loc:
 | |
|         with msg.loading("Reading clusters..."):
 | |
|             clusters = read_clusters(clusters_loc)
 | |
|         msg.good("Read clusters")
 | |
|     else:
 | |
|         clusters = {}
 | |
|     lex_attrs = []
 | |
|     sorted_probs = sorted(probs.items(), key=lambda item: item[1], reverse=True)
 | |
|     if len(sorted_probs):
 | |
|         for i, (word, prob) in tqdm(enumerate(sorted_probs)):
 | |
|             attrs = {"orth": word, "id": i, "prob": prob}
 | |
|             # Decode as a little-endian string, so that we can do & 15 to get
 | |
|             # the first 4 bits. See _parse_features.pyx
 | |
|             if word in clusters:
 | |
|                 attrs["cluster"] = int(clusters[word][::-1], 2)
 | |
|             else:
 | |
|                 attrs["cluster"] = 0
 | |
|             lex_attrs.append(attrs)
 | |
|     return lex_attrs
 | |
| 
 | |
| 
 | |
| def create_model(lang, lex_attrs, name=None):
 | |
|     lang_class = get_lang_class(lang)
 | |
|     nlp = lang_class()
 | |
|     for lexeme in nlp.vocab:
 | |
|         lexeme.rank = 0
 | |
|     lex_added = 0
 | |
|     for attrs in lex_attrs:
 | |
|         if "settings" in attrs:
 | |
|             continue
 | |
|         lexeme = nlp.vocab[attrs["orth"]]
 | |
|         lexeme.set_attrs(**attrs)
 | |
|         lexeme.is_oov = False
 | |
|         lex_added += 1
 | |
|         lex_added += 1
 | |
|     if len(nlp.vocab):
 | |
|         oov_prob = min(lex.prob for lex in nlp.vocab) - 1
 | |
|     else:
 | |
|         oov_prob = DEFAULT_OOV_PROB
 | |
|     nlp.vocab.cfg.update({"oov_prob": oov_prob})
 | |
|     if name:
 | |
|         nlp.meta["name"] = name
 | |
|     return nlp
 | |
| 
 | |
| 
 | |
| def add_vectors(nlp, vectors_loc, prune_vectors, name=None):
 | |
|     vectors_loc = ensure_path(vectors_loc)
 | |
|     if vectors_loc and vectors_loc.parts[-1].endswith(".npz"):
 | |
|         nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb")))
 | |
|         for lex in nlp.vocab:
 | |
|             if lex.rank:
 | |
|                 nlp.vocab.vectors.add(lex.orth, row=lex.rank)
 | |
|     else:
 | |
|         if vectors_loc:
 | |
|             with msg.loading("Reading vectors from {}".format(vectors_loc)):
 | |
|                 vectors_data, vector_keys = read_vectors(vectors_loc)
 | |
|             msg.good("Loaded vectors from {}".format(vectors_loc))
 | |
|         else:
 | |
|             vectors_data, vector_keys = (None, None)
 | |
|         if vector_keys is not None:
 | |
|             for word in vector_keys:
 | |
|                 if word not in nlp.vocab:
 | |
|                     lexeme = nlp.vocab[word]
 | |
|                     lexeme.is_oov = False
 | |
|         if vectors_data is not None:
 | |
|             nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
 | |
|     if name is None:
 | |
|         nlp.vocab.vectors.name = "%s_model.vectors" % nlp.meta["lang"]
 | |
|     else:
 | |
|         nlp.vocab.vectors.name = name
 | |
|     nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
 | |
|     if prune_vectors >= 1:
 | |
|         nlp.vocab.prune_vectors(prune_vectors)
 | |
| 
 | |
| 
 | |
| def read_vectors(vectors_loc):
 | |
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | |
|     from tqdm import tqdm
 | |
| 
 | |
|     f = open_file(vectors_loc)
 | |
|     shape = tuple(int(size) for size in next(f).split())
 | |
|     vectors_data = numpy.zeros(shape=shape, dtype="f")
 | |
|     vectors_keys = []
 | |
|     for i, line in enumerate(tqdm(f)):
 | |
|         line = line.rstrip()
 | |
|         pieces = line.rsplit(" ", vectors_data.shape[1])
 | |
|         word = pieces.pop(0)
 | |
|         if len(pieces) != vectors_data.shape[1]:
 | |
|             msg.fail(Errors.E094.format(line_num=i, loc=vectors_loc), exits=1)
 | |
|         vectors_data[i] = numpy.asarray(pieces, dtype="f")
 | |
|         vectors_keys.append(word)
 | |
|     return vectors_data, vectors_keys
 | |
| 
 | |
| 
 | |
| def read_freqs(freqs_loc, max_length=100, min_doc_freq=5, min_freq=50):
 | |
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | |
|     from tqdm import tqdm
 | |
| 
 | |
|     counts = PreshCounter()
 | |
|     total = 0
 | |
|     with freqs_loc.open() as f:
 | |
|         for i, line in enumerate(f):
 | |
|             freq, doc_freq, key = line.rstrip().split("\t", 2)
 | |
|             freq = int(freq)
 | |
|             counts.inc(i + 1, freq)
 | |
|             total += freq
 | |
|     counts.smooth()
 | |
|     log_total = math.log(total)
 | |
|     probs = {}
 | |
|     with freqs_loc.open() as f:
 | |
|         for line in tqdm(f):
 | |
|             freq, doc_freq, key = line.rstrip().split("\t", 2)
 | |
|             doc_freq = int(doc_freq)
 | |
|             freq = int(freq)
 | |
|             if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
 | |
|                 try:
 | |
|                     word = literal_eval(key)
 | |
|                 except SyntaxError:
 | |
|                     # Take odd strings literally.
 | |
|                     word = literal_eval("'%s'" % key)
 | |
|                 smooth_count = counts.smoother(int(freq))
 | |
|                 probs[word] = math.log(smooth_count) - log_total
 | |
|     oov_prob = math.log(counts.smoother(0)) - log_total
 | |
|     return probs, oov_prob
 | |
| 
 | |
| 
 | |
| def read_clusters(clusters_loc):
 | |
|     # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200
 | |
|     from tqdm import tqdm
 | |
| 
 | |
|     clusters = {}
 | |
|     if ftfy is None:
 | |
|         user_warning(Warnings.W004)
 | |
|     with clusters_loc.open() as f:
 | |
|         for line in tqdm(f):
 | |
|             try:
 | |
|                 cluster, word, freq = line.split()
 | |
|                 if ftfy is not None:
 | |
|                     word = ftfy.fix_text(word)
 | |
|             except ValueError:
 | |
|                 continue
 | |
|             # If the clusterer has only seen the word a few times, its
 | |
|             # cluster is unreliable.
 | |
|             if int(freq) >= 3:
 | |
|                 clusters[word] = cluster
 | |
|             else:
 | |
|                 clusters[word] = "0"
 | |
|     # Expand clusters with re-casing
 | |
|     for word, cluster in list(clusters.items()):
 | |
|         if word.lower() not in clusters:
 | |
|             clusters[word.lower()] = cluster
 | |
|         if word.title() not in clusters:
 | |
|             clusters[word.title()] = cluster
 | |
|         if word.upper() not in clusters:
 | |
|             clusters[word.upper()] = cluster
 | |
|     return clusters
 |