mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			219 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf-8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
 | |
| from spacy.gold import spans_from_biluo_tags, GoldParse, iob_to_biluo
 | |
| from spacy.gold import GoldCorpus, docs_to_json, align
 | |
| from spacy.lang.en import English
 | |
| from spacy.tokens import Doc
 | |
| from .util import make_tempdir
 | |
| import pytest
 | |
| import srsly
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_U(en_vocab):
 | |
|     words = ["I", "flew", "to", "London", "."]
 | |
|     spaces = [True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to London"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "U-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "."]
 | |
|     spaces = [True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_BIL(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_overlap(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
 | |
|     spaces = [True, True, True, True, True, False, True]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [
 | |
|         (len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
 | |
|         (len("I flew to "), len("I flew to San Francisco"), "LOC"),
 | |
|     ]
 | |
|     with pytest.raises(ValueError):
 | |
|         biluo_tags_from_offsets(doc, entities)
 | |
| 
 | |
| 
 | |
| def test_gold_biluo_misalign(en_vocab):
 | |
|     words = ["I", "flew", "to", "San", "Francisco", "Valley."]
 | |
|     spaces = [True, True, True, True, True, False]
 | |
|     doc = Doc(en_vocab, words=words, spaces=spaces)
 | |
|     entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
 | |
|     tags = biluo_tags_from_offsets(doc, entities)
 | |
|     assert tags == ["O", "O", "O", "-", "-", "-"]
 | |
| 
 | |
| 
 | |
| def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
 | |
|     text = "I flew to Silicon Valley via London."
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
 | |
|     doc = en_tokenizer(text)
 | |
|     biluo_tags_converted = biluo_tags_from_offsets(doc, offsets)
 | |
|     assert biluo_tags_converted == biluo_tags
 | |
|     offsets_converted = offsets_from_biluo_tags(doc, biluo_tags)
 | |
|     assert offsets_converted == offsets
 | |
| 
 | |
| 
 | |
| def test_biluo_spans(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     spans = spans_from_biluo_tags(doc, biluo_tags)
 | |
|     assert len(spans) == 2
 | |
|     assert spans[0].text == "Silicon Valley"
 | |
|     assert spans[0].label_ == "LOC"
 | |
|     assert spans[1].text == "London"
 | |
|     assert spans[1].label_ == "GPE"
 | |
| 
 | |
| 
 | |
| def test_gold_ner_missing_tags(en_tokenizer):
 | |
|     doc = en_tokenizer("I flew to Silicon Valley via London.")
 | |
|     biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     gold = GoldParse(doc, entities=biluo_tags)  # noqa: F841
 | |
| 
 | |
| 
 | |
| def test_iob_to_biluo():
 | |
|     good_iob = ["O", "O", "B-LOC", "I-LOC", "O", "B-PERSON"]
 | |
|     good_biluo = ["O", "O", "B-LOC", "L-LOC", "O", "U-PERSON"]
 | |
|     bad_iob = ["O", "O", '"', "B-LOC", "I-LOC"]
 | |
|     converted_biluo = iob_to_biluo(good_iob)
 | |
|     assert good_biluo == converted_biluo
 | |
|     with pytest.raises(ValueError):
 | |
|         iob_to_biluo(bad_iob)
 | |
| 
 | |
| 
 | |
| def test_roundtrip_docs_to_json():
 | |
|     text = "I flew to Silicon Valley via London."
 | |
|     tags = ["PRP", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
 | |
|     heads = [1, 1, 1, 4, 2, 1, 5, 1]
 | |
|     deps = ["nsubj", "ROOT", "prep", "compound", "pobj", "prep", "pobj", "punct"]
 | |
|     biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
 | |
|     cats = {"TRAVEL": 1.0, "BAKING": 0.0}
 | |
|     nlp = English()
 | |
|     doc = nlp(text)
 | |
|     for i in range(len(tags)):
 | |
|         doc[i].tag_ = tags[i]
 | |
|         doc[i].dep_ = deps[i]
 | |
|         doc[i].head = doc[heads[i]]
 | |
|     doc.ents = spans_from_biluo_tags(doc, biluo_tags)
 | |
|     doc.cats = cats
 | |
|     doc.is_tagged = True
 | |
|     doc.is_parsed = True
 | |
| 
 | |
|     # roundtrip to JSON
 | |
|     with make_tempdir() as tmpdir:
 | |
|         json_file = tmpdir / "roundtrip.json"
 | |
|         srsly.write_json(json_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(str(json_file), str(json_file))
 | |
| 
 | |
|     reloaded_doc, goldparse = next(goldcorpus.train_docs(nlp))
 | |
| 
 | |
|     assert len(doc) == goldcorpus.count_train()
 | |
|     assert text == reloaded_doc.text
 | |
|     assert tags == goldparse.tags
 | |
|     assert deps == goldparse.labels
 | |
|     assert heads == goldparse.heads
 | |
|     assert biluo_tags == goldparse.ner
 | |
|     assert "TRAVEL" in goldparse.cats
 | |
|     assert "BAKING" in goldparse.cats
 | |
|     assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == goldparse.cats["BAKING"]
 | |
| 
 | |
|     # roundtrip to JSONL train dicts
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "roundtrip.jsonl"
 | |
|         srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     reloaded_doc, goldparse = next(goldcorpus.train_docs(nlp))
 | |
| 
 | |
|     assert len(doc) == goldcorpus.count_train()
 | |
|     assert text == reloaded_doc.text
 | |
|     assert tags == goldparse.tags
 | |
|     assert deps == goldparse.labels
 | |
|     assert heads == goldparse.heads
 | |
|     assert biluo_tags == goldparse.ner
 | |
|     assert "TRAVEL" in goldparse.cats
 | |
|     assert "BAKING" in goldparse.cats
 | |
|     assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == goldparse.cats["BAKING"]
 | |
| 
 | |
|     # roundtrip to JSONL tuples
 | |
|     with make_tempdir() as tmpdir:
 | |
|         jsonl_file = tmpdir / "roundtrip.jsonl"
 | |
|         # write to JSONL train dicts
 | |
|         srsly.write_jsonl(jsonl_file, [docs_to_json(doc)])
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
|         # load and rewrite as JSONL tuples
 | |
|         srsly.write_jsonl(jsonl_file, goldcorpus.train_tuples)
 | |
|         goldcorpus = GoldCorpus(str(jsonl_file), str(jsonl_file))
 | |
| 
 | |
|     reloaded_doc, goldparse = next(goldcorpus.train_docs(nlp))
 | |
| 
 | |
|     assert len(doc) == goldcorpus.count_train()
 | |
|     assert text == reloaded_doc.text
 | |
|     assert tags == goldparse.tags
 | |
|     assert deps == goldparse.labels
 | |
|     assert heads == goldparse.heads
 | |
|     assert biluo_tags == goldparse.ner
 | |
|     assert "TRAVEL" in goldparse.cats
 | |
|     assert "BAKING" in goldparse.cats
 | |
|     assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
 | |
|     assert cats["BAKING"] == goldparse.cats["BAKING"]
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip(reason="skip while we have backwards-compatible alignment")
 | |
| @pytest.mark.parametrize(
 | |
|     "tokens_a,tokens_b,expected",
 | |
|     [
 | |
|         (["a", "b", "c"], ["ab", "c"], (3, [-1, -1, 1], [-1, 2], {0: 0, 1: 0}, {})),
 | |
|         (
 | |
|             ["a", "b", "``", "c"],
 | |
|             ['ab"', "c"],
 | |
|             (4, [-1, -1, -1, 1], [-1, 3], {0: 0, 1: 0, 2: 0}, {}),
 | |
|         ),
 | |
|         (["a", "bc"], ["ab", "c"], (4, [-1, -1], [-1, -1], {0: 0}, {1: 1})),
 | |
|         (
 | |
|             ["ab", "c", "d"],
 | |
|             ["a", "b", "cd"],
 | |
|             (6, [-1, -1, -1], [-1, -1, -1], {1: 2, 2: 2}, {0: 0, 1: 0}),
 | |
|         ),
 | |
|         (
 | |
|             ["a", "b", "cd"],
 | |
|             ["a", "b", "c", "d"],
 | |
|             (3, [0, 1, -1], [0, 1, -1, -1], {}, {2: 2, 3: 2}),
 | |
|         ),
 | |
|         ([" ", "a"], ["a"], (1, [-1, 0], [1], {}, {})),
 | |
|     ],
 | |
| )
 | |
| def test_align(tokens_a, tokens_b, expected):
 | |
|     cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_a, tokens_b)
 | |
|     assert (cost, list(a2b), list(b2a), a2b_multi, b2a_multi) == expected
 | |
|     # check symmetry
 | |
|     cost, a2b, b2a, a2b_multi, b2a_multi = align(tokens_b, tokens_a)
 | |
|     assert (cost, list(b2a), list(a2b), b2a_multi, a2b_multi) == expected
 | |
| 
 | |
| 
 | |
| def test_goldparse_startswith_space(en_tokenizer):
 | |
|     text = " a"
 | |
|     doc = en_tokenizer(text)
 | |
|     g = GoldParse(doc, words=["a"], entities=["U-DATE"], deps=["ROOT"], heads=[0])
 | |
|     assert g.words == [" ", "a"]
 | |
|     assert g.ner == [None, "U-DATE"]
 | |
|     assert g.labels == [None, "ROOT"]
 |