mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			120 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Cython
		
	
	
	
	
	
"""
 | 
						|
MALT-style dependency parser
 | 
						|
"""
 | 
						|
from __future__ import unicode_literals
 | 
						|
cimport cython
 | 
						|
from libc.stdint cimport uint32_t, uint64_t
 | 
						|
import random
 | 
						|
import os.path
 | 
						|
from os import path
 | 
						|
import shutil
 | 
						|
import json
 | 
						|
 | 
						|
from cymem.cymem cimport Pool, Address
 | 
						|
from murmurhash.mrmr cimport hash64
 | 
						|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t
 | 
						|
 | 
						|
 | 
						|
from util import Config
 | 
						|
 | 
						|
from thinc.features cimport Extractor
 | 
						|
from thinc.features cimport Feature
 | 
						|
from thinc.features cimport count_feats
 | 
						|
 | 
						|
from thinc.learner cimport LinearModel
 | 
						|
 | 
						|
from ..tokens cimport Tokens, TokenC
 | 
						|
from ..strings cimport StringStore
 | 
						|
 | 
						|
from .arc_eager cimport TransitionSystem, Transition
 | 
						|
from .transition_system import OracleError
 | 
						|
 | 
						|
from ._state cimport new_state, State, is_final, get_idx, get_s0, get_s1, get_n0, get_n1
 | 
						|
from .conll cimport GoldParse
 | 
						|
 | 
						|
from . import _parse_features
 | 
						|
from ._parse_features cimport fill_context, CONTEXT_SIZE
 | 
						|
 | 
						|
 | 
						|
DEBUG = False 
 | 
						|
def set_debug(val):
 | 
						|
    global DEBUG
 | 
						|
    DEBUG = val
 | 
						|
 | 
						|
 | 
						|
cdef unicode print_state(State* s, list words):
 | 
						|
    words = list(words) + ['EOL']
 | 
						|
    top = words[s.stack[0]] + '_%d' % s.sent[s.stack[0]].head
 | 
						|
    second = words[s.stack[-1]] + '_%d' % s.sent[s.stack[-1]].head
 | 
						|
    third = words[s.stack[-2]] + '_%d' % s.sent[s.stack[-2]].head
 | 
						|
    n0 = words[s.i] if s.i < len(words) else 'EOL'
 | 
						|
    n1 = words[s.i + 1] if s.i+1 < len(words) else 'EOL'
 | 
						|
    if s.ents_len:
 | 
						|
        ent = '%s %d-%d' % (s.ent.label, s.ent.start, s.ent.end)
 | 
						|
    else:
 | 
						|
        ent = '-'
 | 
						|
    return ' '.join((ent, str(s.stack_len), third, second, top, '|', n0, n1))
 | 
						|
 | 
						|
 | 
						|
def get_templates(name):
 | 
						|
    pf = _parse_features
 | 
						|
    if name == 'ner':
 | 
						|
        return pf.ner
 | 
						|
    elif name == 'debug':
 | 
						|
        return pf.unigrams
 | 
						|
    else:
 | 
						|
        return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
 | 
						|
                pf.tree_shape + pf.trigrams)
 | 
						|
 | 
						|
 | 
						|
cdef class GreedyParser:
 | 
						|
    def __init__(self, StringStore strings, model_dir, transition_system):
 | 
						|
        assert os.path.exists(model_dir) and os.path.isdir(model_dir)
 | 
						|
        self.cfg = Config.read(model_dir, 'config')
 | 
						|
        self.moves = transition_system(strings, self.cfg.labels)
 | 
						|
        templates = get_templates(self.cfg.features)
 | 
						|
        self.model = Model(self.moves.n_moves, templates, model_dir)
 | 
						|
 | 
						|
    def __call__(self, Tokens tokens):
 | 
						|
        if tokens.length == 0:
 | 
						|
            return 0
 | 
						|
 | 
						|
        cdef atom_t[CONTEXT_SIZE] context
 | 
						|
        cdef int n_feats
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef State* state = new_state(mem, tokens.data, tokens.length)
 | 
						|
        self.moves.first_state(state)
 | 
						|
        cdef Transition guess
 | 
						|
        while not is_final(state):
 | 
						|
            fill_context(context, state)
 | 
						|
            scores = self.model.score(context)
 | 
						|
            guess = self.moves.best_valid(scores, state)
 | 
						|
            #print self.moves.move_name(guess.move, guess.label),
 | 
						|
            #print print_state(state, [w.orth_ for w in tokens])
 | 
						|
            guess.do(&guess, state)
 | 
						|
        tokens.set_parse(state.sent)
 | 
						|
        return 0
 | 
						|
 | 
						|
    def train(self, Tokens tokens, GoldParse gold):
 | 
						|
        self.moves.preprocess_gold(gold)
 | 
						|
        cdef Pool mem = Pool()
 | 
						|
        cdef State* state = new_state(mem, tokens.data, tokens.length)
 | 
						|
        self.moves.first_state(state)
 | 
						|
 | 
						|
        cdef int cost
 | 
						|
        cdef const Feature* feats
 | 
						|
        cdef const weight_t* scores
 | 
						|
        cdef Transition guess
 | 
						|
        cdef Transition best
 | 
						|
        cdef atom_t[CONTEXT_SIZE] context
 | 
						|
        while not is_final(state):
 | 
						|
            fill_context(context, state)
 | 
						|
            scores = self.model.score(context)
 | 
						|
            guess = self.moves.best_valid(scores, state)
 | 
						|
            best = self.moves.best_gold(scores, state, gold)
 | 
						|
            
 | 
						|
            cost = guess.get_cost(&guess, state, gold)
 | 
						|
            self.model.update(context, guess.clas, best.clas, cost)
 | 
						|
 | 
						|
            guess.do(&guess, state)
 |