mirror of
https://github.com/explosion/spaCy.git
synced 2025-10-26 13:41:21 +03:00
* fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build |
||
|---|---|---|
| .. | ||
| __init__.py | ||
| entity_linker_evaluation.py | ||
| kb_creator.py | ||
| README.md | ||
| train_descriptions.py | ||
| wiki_io.py | ||
| wiki_namespaces.py | ||
| wikidata_pretrain_kb.py | ||
| wikidata_processor.py | ||
| wikidata_train_entity_linker.py | ||
| wikipedia_processor.py | ||
Entity Linking with Wikipedia and Wikidata
Step 1: Create a Knowledge Base (KB) and training data
Run wikipedia_pretrain_kb.py
- This takes as input the locations of a Wikipedia and a Wikidata dump, and produces a KB directory + training file
- WikiData: get
latest-all.json.bz2from https://dumps.wikimedia.org/wikidatawiki/entities/ - Wikipedia: get
enwiki-latest-pages-articles-multistream.xml.bz2from https://dumps.wikimedia.org/enwiki/latest/ (or for any other language)
- WikiData: get
- You can set the filtering parameters for KB construction:
max_per_alias(-a): (max) number of candidate entities in the KB per alias/synonymmin_freq(-f): threshold of number of times an entity should occur in the corpus to be included in the KBmin_pair(-c): threshold of number of times an entity+alias combination should occur in the corpus to be included in the KB
- Further parameters to set:
descriptions_from_wikipedia(-wp): whether to parse descriptions from Wikipedia (True) or Wikidata (False)entity_vector_length(-v): length of the pre-trained entity description vectorslang(-la): language for which to fetch Wikidata information (as the dump contains all languages)
Quick testing and rerunning:
- When trying out the pipeline for a quick test, set
limit_prior(-lp),limit_train(-lt) and/orlimit_wd(-lw) to read only parts of the dumps instead of everything.- e.g. set
-lt 20000 -lp 2000 -lw 3000 -f 1
- e.g. set
- If you only want to (re)run certain parts of the pipeline, just remove the corresponding files and they will be recalculated or reparsed.
Step 2: Train an Entity Linking model
Run wikidata_train_entity_linker.py
- This takes the KB directory produced by Step 1, and trains an Entity Linking model
- Specify the output directory (
-o) in which the final, trained model will be saved - You can set the learning parameters for the EL training:
epochs(-e): number of training iterationsdropout(-p): dropout ratelr(-n): learning ratel2(-r): L2 regularization
- Specify the number of training and dev testing articles with
train_articles(-t) anddev_articles(-d) respectively- If not specified, the full dataset will be processed - this may take a LONG time !
- Further parameters to set:
labels_discard(-l): NER label types to discard during training