spaCy/spacy/training/example.pyi
2023-05-31 10:57:00 +02:00

74 lines
2.4 KiB
Python

from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
from ..tokens import Doc, Span
from .alignment import Alignment
def annotations_to_doc(
vocab,
tok_annot,
doc_annot,
) -> Doc: ...
def validate_examples(
examples: Iterable[Example],
method: str,
) -> None: ...
def validate_get_examples(
get_examples: Callable[[], Iterable[Example]],
method: str,
): ...
class Example:
x: Doc
y: Doc
def __init__(
self,
predicted: Doc,
reference: Doc,
*,
alignment: Optional[Alignment] = None,
): ...
def __len__(self) -> int: ...
@property
def predicted(self) -> Doc: ...
@predicted.setter
def predicted(self, doc: Doc) -> None: ...
@property
def reference(self) -> Doc: ...
@reference.setter
def reference(self, doc: Doc) -> None: ...
def copy(self) -> Example: ...
@classmethod
def from_dict(cls, predicted: Doc, example_dict: Dict) -> Example: ...
@property
def alignment(self) -> Alignment: ...
def _get_aligned_vectorized(self, align, gold_values): ...
def _get_aligned_non_vectorized(self, align, gold_values): ...
def get_aligned(self, field, as_string=False): ...
def get_aligned_parse(self, projectivize=True): ...
def get_aligned_sent_starts(self): ...
def get_aligned_spans_x2y(self, x_spans, allow_overlap=False): ...
def get_aligned_spans_y2x(self, y_spans, allow_overlap=False): ...
def _get_aligned_spans(self, doc, spans, align, allow_overlap): ...
def get_aligned_ents_and_ner(self): ...
def get_aligned_ner(self): ...
def get_matching_ents(self, check_label: bool = True) -> List[Span]: ...
def to_dict(self) -> Dict[str, Any]: ...
def _spans_to_dict(self) -> Dict[str, List[Tuple[int, int, str, str]]]: ...
def _links_to_dict(self) -> Dict[Tuple[int, int], Dict[str, float]]: ...
def split_sents(self) -> List[Example]: ...
@property
def text(self) -> str: ...
def __str__(self) -> str: ...
def __repr__(self) -> str: ...
def _annot2array(vocab, tok_annot, doc_annot): ...
def _add_spans_to_doc(doc, spans_data): ...
def _add_entities_to_doc(doc, ner_data): ...
def _parse_example_dict_data(example_dict): ...
def _fix_legacy_dict_data(example_dict): ...
def _has_field(annot, field) -> bool: ...
def _parse_ner_tags(biluo_or_offsets, vocab, words, spaces): ...
def _parse_links(vocab, words, spaces, links): ...
def _guess_spaces(text, words): ...