mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			188 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| import pytest
 | |
| from spacy.tokens import Span
 | |
| from spacy.language import Language
 | |
| from spacy.pipeline import EntityRuler
 | |
| from spacy.errors import MatchPatternError
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def nlp():
 | |
|     return Language()
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def patterns():
 | |
|     return [
 | |
|         {"label": "HELLO", "pattern": "hello world"},
 | |
|         {"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
 | |
|         {"label": "HELLO", "pattern": [{"ORTH": "HELLO"}]},
 | |
|         {"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
 | |
|         {"label": "TECH_ORG", "pattern": "Apple", "id": "a1"},
 | |
|         {"label": "TECH_ORG", "pattern": "Microsoft", "id": "a2"},
 | |
|     ]
 | |
| 
 | |
| 
 | |
| @pytest.fixture
 | |
| def add_ent():
 | |
|     def add_ent_component(doc):
 | |
|         doc.ents = [Span(doc, 0, 3, label=doc.vocab.strings["ORG"])]
 | |
|         return doc
 | |
| 
 | |
|     return add_ent_component
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_init(nlp, patterns):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns)
 | |
|     assert len(ruler) == len(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     assert "HELLO" in ruler
 | |
|     assert "BYE" in ruler
 | |
|     nlp.add_pipe(ruler)
 | |
|     doc = nlp("hello world bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "HELLO"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_existing(nlp, patterns, add_ent):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns)
 | |
|     nlp.add_pipe(add_ent)
 | |
|     nlp.add_pipe(ruler)
 | |
|     doc = nlp("OH HELLO WORLD bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "ORG"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_existing_overwrite(nlp, patterns, add_ent):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     nlp.add_pipe(add_ent)
 | |
|     nlp.add_pipe(ruler)
 | |
|     doc = nlp("OH HELLO WORLD bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "HELLO"
 | |
|     assert doc.ents[0].text == "HELLO"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_existing_complex(nlp, patterns, add_ent):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     nlp.add_pipe(add_ent)
 | |
|     nlp.add_pipe(ruler)
 | |
|     doc = nlp("foo foo bye bye")
 | |
|     assert len(doc.ents) == 2
 | |
|     assert doc.ents[0].label_ == "COMPLEX"
 | |
|     assert doc.ents[1].label_ == "BYE"
 | |
|     assert len(doc.ents[0]) == 2
 | |
|     assert len(doc.ents[1]) == 2
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_entity_id(nlp, patterns):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     nlp.add_pipe(ruler)
 | |
|     doc = nlp("Apple is a technology company")
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "TECH_ORG"
 | |
|     assert doc.ents[0].ent_id_ == "a1"
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_cfg_ent_id_sep(nlp, patterns):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True, ent_id_sep="**")
 | |
|     assert "TECH_ORG**a1" in ruler.phrase_patterns
 | |
|     nlp.add_pipe(ruler)
 | |
|     doc = nlp("Apple is a technology company")
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "TECH_ORG"
 | |
|     assert doc.ents[0].ent_id_ == "a1"
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_serialize_bytes(nlp, patterns):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns)
 | |
|     assert len(ruler) == len(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     ruler_bytes = ruler.to_bytes()
 | |
|     new_ruler = EntityRuler(nlp)
 | |
|     assert len(new_ruler) == 0
 | |
|     assert len(new_ruler.labels) == 0
 | |
|     new_ruler = new_ruler.from_bytes(ruler_bytes)
 | |
|     assert len(new_ruler) == len(patterns)
 | |
|     assert len(new_ruler.labels) == 4
 | |
|     assert len(new_ruler.patterns) == len(ruler.patterns)
 | |
|     for pattern in ruler.patterns:
 | |
|         assert pattern in new_ruler.patterns
 | |
|     assert sorted(new_ruler.labels) == sorted(ruler.labels)
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns):
 | |
|     ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
 | |
|     assert len(ruler) == len(patterns)
 | |
|     assert len(ruler.labels) == 4
 | |
|     ruler_bytes = ruler.to_bytes()
 | |
|     new_ruler = EntityRuler(nlp)
 | |
|     assert len(new_ruler) == 0
 | |
|     assert len(new_ruler.labels) == 0
 | |
|     assert new_ruler.phrase_matcher_attr is None
 | |
|     new_ruler = new_ruler.from_bytes(ruler_bytes)
 | |
|     assert len(new_ruler) == len(patterns)
 | |
|     assert len(new_ruler.labels) == 4
 | |
|     assert new_ruler.phrase_matcher_attr == "LOWER"
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_validate(nlp):
 | |
|     ruler = EntityRuler(nlp)
 | |
|     validated_ruler = EntityRuler(nlp, validate=True)
 | |
| 
 | |
|     valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
 | |
|     invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
 | |
| 
 | |
|     # invalid pattern raises error without validate
 | |
|     with pytest.raises(ValueError):
 | |
|         ruler.add_patterns([invalid_pattern])
 | |
| 
 | |
|     # valid pattern is added without errors with validate
 | |
|     validated_ruler.add_patterns([valid_pattern])
 | |
| 
 | |
|     # invalid pattern raises error with validate
 | |
|     with pytest.raises(MatchPatternError):
 | |
|         validated_ruler.add_patterns([invalid_pattern])
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_properties(nlp, patterns):
 | |
|     ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
 | |
|     assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"])
 | |
|     assert sorted(ruler.ent_ids) == ["a1", "a2"]
 | |
| 
 | |
| 
 | |
| def test_entity_ruler_overlapping_spans(nlp):
 | |
|     ruler = EntityRuler(nlp)
 | |
|     patterns = [
 | |
|         {"label": "FOOBAR", "pattern": "foo bar"},
 | |
|         {"label": "BARBAZ", "pattern": "bar baz"},
 | |
|     ]
 | |
|     ruler.add_patterns(patterns)
 | |
|     doc = ruler(nlp.make_doc("foo bar baz"))
 | |
|     assert len(doc.ents) == 1
 | |
|     assert doc.ents[0].label_ == "FOOBAR"
 | |
| 
 | |
| 
 | |
| @pytest.mark.parametrize("n_process", [1, 2])
 | |
| def test_entity_ruler_multiprocessing(nlp, n_process):
 | |
|     ruler = EntityRuler(nlp)
 | |
|     texts = [
 | |
|         "I enjoy eating Pizza Hut pizza."
 | |
|     ]
 | |
| 
 | |
|     patterns = [
 | |
|         {"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}
 | |
|     ]
 | |
| 
 | |
|     ruler.add_patterns(patterns)
 | |
|     nlp.add_pipe(ruler)
 | |
| 
 | |
|     for doc in nlp.pipe(texts, n_process=2):
 | |
|         for ent in doc.ents:
 | |
|             assert ent.ent_id_ == "1234"
 |