spaCy/spacy/tests/test_models.py
Daniël de Kok e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module (#12721)
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00

287 lines
8.9 KiB
Python

from typing import List
import numpy
import pytest
from numpy.testing import assert_array_almost_equal, assert_array_equal
from thinc.api import (
Adam,
Logistic,
Ragged,
Relu,
chain,
fix_random_seed,
reduce_mean,
set_dropout_rate,
)
from spacy.lang.en import English
from spacy.lang.en.examples import sentences as EN_SENTENCES
from spacy.ml.extract_spans import _get_span_indices, extract_spans
from spacy.ml.models import (
MaxoutWindowEncoder,
MultiHashEmbed,
build_bow_text_classifier,
build_simple_cnn_text_classifier,
build_spancat_model,
build_Tok2Vec_model,
)
from spacy.ml.staticvectors import StaticVectors
def get_textcat_bow_kwargs():
return {
"exclusive_classes": True,
"ngram_size": 1,
"no_output_layer": False,
"nO": 34,
}
def get_textcat_cnn_kwargs():
return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13}
def get_all_params(model):
params = []
for node in model.walk():
for name in node.param_names:
params.append(node.get_param(name).ravel())
return node.ops.xp.concatenate(params)
def get_docs():
nlp = English()
return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
def get_gradient(model, Y):
if isinstance(Y, model.ops.xp.ndarray):
dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
return dY
elif isinstance(Y, List):
return [get_gradient(model, y) for y in Y]
else:
raise ValueError(f"Could not get gradient for type {type(Y)}")
def get_tok2vec_kwargs():
# This actually creates models, so seems best to put it in a function.
return {
"embed": MultiHashEmbed(
width=32,
rows=[500, 500, 500],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False,
),
"encode": MaxoutWindowEncoder(
width=32, depth=2, maxout_pieces=2, window_size=1
),
}
def make_test_tok2vec():
return build_Tok2Vec_model(**get_tok2vec_kwargs())
def test_multi_hash_embed():
embed = MultiHashEmbed(
width=32,
rows=[500, 500, 500],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False,
)
hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
assert len(hash_embeds) == 3
# Check they look at different columns.
assert list(sorted(he.attrs["column"] for he in hash_embeds)) == [0, 1, 2]
# Check they use different seeds
assert len(set(he.attrs["seed"] for he in hash_embeds)) == 3
# Check they all have the same number of rows
assert [he.get_dim("nV") for he in hash_embeds] == [500, 500, 500]
# Now try with different row factors
embed = MultiHashEmbed(
width=32,
rows=[1000, 50, 250],
attrs=["NORM", "PREFIX", "SHAPE"],
include_static_vectors=False,
)
hash_embeds = [node for node in embed.walk() if node.name == "hashembed"]
assert [he.get_dim("nV") for he in hash_embeds] == [1000, 50, 250]
@pytest.mark.parametrize(
"seed,model_func,kwargs",
[
(0, build_Tok2Vec_model, get_tok2vec_kwargs()),
(0, build_bow_text_classifier, get_textcat_bow_kwargs()),
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()),
],
)
def test_models_initialize_consistently(seed, model_func, kwargs):
fix_random_seed(seed)
model1 = model_func(**kwargs)
model1.initialize()
fix_random_seed(seed)
model2 = model_func(**kwargs)
model2.initialize()
params1 = get_all_params(model1)
params2 = get_all_params(model2)
assert_array_equal(model1.ops.to_numpy(params1), model2.ops.to_numpy(params2))
@pytest.mark.parametrize(
"seed,model_func,kwargs,get_X",
[
(0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
(0, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
],
)
def test_models_predict_consistently(seed, model_func, kwargs, get_X):
fix_random_seed(seed)
model1 = model_func(**kwargs).initialize()
Y1 = model1.predict(get_X())
fix_random_seed(seed)
model2 = model_func(**kwargs).initialize()
Y2 = model2.predict(get_X())
if model1.has_ref("tok2vec"):
tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
for i in range(len(tok2vec1)):
for j in range(len(tok2vec1[i])):
assert_array_equal(
numpy.asarray(model1.ops.to_numpy(tok2vec1[i][j])),
numpy.asarray(model2.ops.to_numpy(tok2vec2[i][j])),
)
try:
Y1 = model1.ops.to_numpy(Y1)
Y2 = model2.ops.to_numpy(Y2)
except Exception:
pass
if isinstance(Y1, numpy.ndarray):
assert_array_equal(Y1, Y2)
elif isinstance(Y1, List):
assert len(Y1) == len(Y2)
for y1, y2 in zip(Y1, Y2):
try:
y1 = model1.ops.to_numpy(y1)
y2 = model2.ops.to_numpy(y2)
except Exception:
pass
assert_array_equal(y1, y2)
else:
raise ValueError(f"Could not compare type {type(Y1)}")
@pytest.mark.parametrize(
"seed,dropout,model_func,kwargs,get_X",
[
(0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
(0, 0.2, build_bow_text_classifier, get_textcat_bow_kwargs(), get_docs),
(0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
],
)
def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
def get_updated_model():
fix_random_seed(seed)
optimizer = Adam(0.001)
model = model_func(**kwargs).initialize()
initial_params = get_all_params(model)
set_dropout_rate(model, dropout)
for _ in range(5):
Y, get_dX = model.begin_update(get_X())
dY = get_gradient(model, Y)
get_dX(dY)
model.finish_update(optimizer)
updated_params = get_all_params(model)
with pytest.raises(AssertionError):
assert_array_equal(
model.ops.to_numpy(initial_params), model.ops.to_numpy(updated_params)
)
return model
model1 = get_updated_model()
model2 = get_updated_model()
assert_array_almost_equal(
model1.ops.to_numpy(get_all_params(model1)),
model2.ops.to_numpy(get_all_params(model2)),
decimal=5,
)
@pytest.mark.parametrize("model_func,kwargs", [(StaticVectors, {"nO": 128, "nM": 300})])
def test_empty_docs(model_func, kwargs):
nlp = English()
model = model_func(**kwargs).initialize()
# Test the layer can be called successfully with 0, 1 and 2 empty docs.
for n_docs in range(3):
docs = [nlp("") for _ in range(n_docs)]
# Test predict
model.predict(docs)
# Test backprop
output, backprop = model.begin_update(docs)
backprop(output)
def test_init_extract_spans():
extract_spans().initialize()
def test_extract_spans_span_indices():
model = extract_spans().initialize()
spans = Ragged(
model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
model.ops.asarray([2, 1], dtype="i"),
)
x_lengths = model.ops.asarray([5, 10], dtype="i")
indices = _get_span_indices(model.ops, spans, x_lengths)
assert list(indices) == [0, 1, 2, 2, 10, 11]
def test_extract_spans_forward_backward():
model = extract_spans().initialize()
X = Ragged(model.ops.alloc2f(15, 4), model.ops.asarray([5, 10], dtype="i"))
spans = Ragged(
model.ops.asarray([[0, 3], [2, 3], [5, 7]], dtype="i"),
model.ops.asarray([2, 1], dtype="i"),
)
Y, backprop = model.begin_update((X, spans))
assert list(Y.lengths) == [3, 1, 2]
assert Y.dataXd.shape == (6, 4)
dX, spans2 = backprop(Y)
assert spans2 is spans
assert dX.dataXd.shape == X.dataXd.shape
assert list(dX.lengths) == list(X.lengths)
def test_spancat_model_init():
model = build_spancat_model(
build_Tok2Vec_model(**get_tok2vec_kwargs()), reduce_mean(), Logistic()
)
model.initialize()
def test_spancat_model_forward_backward(nO=5):
tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs())
docs = get_docs()
spans_list = []
lengths = []
for doc in docs:
spans_list.append(doc[:2])
spans_list.append(doc[1:4])
lengths.append(2)
spans = Ragged(
tok2vec.ops.asarray([[s.start, s.end] for s in spans_list], dtype="i"),
tok2vec.ops.asarray(lengths, dtype="i"),
)
model = build_spancat_model(
tok2vec, reduce_mean(), chain(Relu(nO=nO), Logistic())
).initialize(X=(docs, spans))
Y, backprop = model((docs, spans), is_train=True)
assert Y.shape == (spans.dataXd.shape[0], nO)
backprop(Y)