mirror of
https://github.com/explosion/spaCy.git
synced 2025-11-14 14:56:02 +03:00
* Switch to train_dataset() function in train CLI * Fixes for pipe() methods in pipeline components * Don't clobber `examples` variable with `as_example` in pipe() methods * Remove unnecessary traversals of `examples` * Update Parser.pipe() for Examples * Add `as_examples` kwarg to `pipe()` with implementation to return `Example`s * Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from `Pipe`) * Fixes to Example implementation in spacy.gold * Move `make_projective` from an attribute of Example to an argument of `Example.get_gold_parses()` * Head of 0 are not treated as unset * Unset heads are set to self rather than `None` (which causes problems while projectivizing) * Check for `Doc` (not just not `None`) when creating GoldParses for pre-merged example * Don't clobber `examples` variable in `iter_gold_docs()` * Add/modify gold tests for handling projectivity * In JSON roundtrip compare results from `dev_dataset` rather than `train_dataset` to avoid projectivization (and other potential modifications) * Add test for projective train vs. nonprojective dev versions of the same `Doc` * Handle ignore_misaligned as arg rather than attr Move `ignore_misaligned` from an attribute of `Example` to an argument to `Example.get_gold_parses()`, which makes it parallel to `make_projective`. Add test with old and new align that checks whether `ignore_misaligned` errors are raised as expected (only for new align). * Remove unused attrs from gold.pxd Remove `ignore_misaligned` and `make_projective` from `gold.pxd` * Restructure Example with merged sents as default An `Example` now includes a single `TokenAnnotation` that includes all the information from one `Doc` (=JSON `paragraph`). If required, the individual sentences can be returned as a list of examples with `Example.split_sents()` with no raw text available. * Input/output a single `Example.token_annotation` * Add `sent_starts` to `TokenAnnotation` to handle sentence boundaries * Replace `Example.merge_sents()` with `Example.split_sents()` * Modify components to use a single `Example.token_annotation` * Pipeline components * conllu2json converter * Rework/rename `add_token_annotation()` and `add_doc_annotation()` to `set_token_annotation()` and `set_doc_annotation()`, functions that set rather then appending/extending. * Rename `morphology` to `morphs` in `TokenAnnotation` and `GoldParse` * Add getters to `TokenAnnotation` to supply default values when a given attribute is not available * `Example.get_gold_parses()` in `spacy.gold._make_golds()` is only applied on single examples, so the `GoldParse` is returned saved in the provided `Example` rather than creating a new `Example` with no other internal annotation * Update tests for API changes and `merge_sents()` vs. `split_sents()` * Refer to Example.goldparse in iter_gold_docs() Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold` because a `None` `GoldParse` is generated with ignore_misaligned and generating it on-the-fly can raise an unwanted AlignmentError * Fix make_orth_variants() Fix bug in make_orth_variants() related to conversion from multiple to one TokenAnnotation per Example. * Add basic test for make_orth_variants() * Replace try/except with conditionals * Replace default morph value with set
146 lines
4.7 KiB
Python
146 lines
4.7 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import re
|
|
|
|
from spacy.gold import Example
|
|
from ...gold import iob_to_biluo
|
|
|
|
|
|
def conllu2json(input_data, n_sents=10, use_morphology=False, lang=None, **_):
|
|
"""
|
|
Convert conllu files into JSON format for use with train cli.
|
|
use_morphology parameter enables appending morphology to tags, which is
|
|
useful for languages such as Spanish, where UD tags are not so rich.
|
|
|
|
Extract NER tags if available and convert them so that they follow
|
|
BILUO and the Wikipedia scheme
|
|
"""
|
|
# by @dvsrepo, via #11 explosion/spacy-dev-resources
|
|
# by @katarkor
|
|
docs = []
|
|
sentences = []
|
|
conll_data = read_conllx(input_data, use_morphology=use_morphology)
|
|
checked_for_ner = False
|
|
has_ner_tags = False
|
|
for i, example in enumerate(conll_data):
|
|
if not checked_for_ner:
|
|
has_ner_tags = is_ner(example.token_annotation.entities[0])
|
|
checked_for_ner = True
|
|
sentences.append(generate_sentence(example.token_annotation, has_ner_tags))
|
|
# Real-sized documents could be extracted using the comments on the
|
|
# conllu document
|
|
if len(sentences) % n_sents == 0:
|
|
doc = create_doc(sentences, i)
|
|
docs.append(doc)
|
|
sentences = []
|
|
return docs
|
|
|
|
|
|
def is_ner(tag):
|
|
"""
|
|
Check the 10th column of the first token to determine if the file contains
|
|
NER tags
|
|
"""
|
|
tag_match = re.match("([A-Z_]+)-([A-Z_]+)", tag)
|
|
if tag_match:
|
|
return True
|
|
elif tag == "O":
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def read_conllx(input_data, use_morphology=False, n=0):
|
|
""" Yield example data points, one for each sentence """
|
|
i = 0
|
|
for sent in input_data.strip().split("\n\n"):
|
|
lines = sent.strip().split("\n")
|
|
if lines:
|
|
while lines[0].startswith("#"):
|
|
lines.pop(0)
|
|
ids, words, tags, heads, deps, ents = [], [], [], [], [], []
|
|
for line in lines:
|
|
parts = line.split("\t")
|
|
id_, word, lemma, pos, tag, morph, head, dep, _1, iob = parts
|
|
if "-" in id_ or "." in id_:
|
|
continue
|
|
try:
|
|
id_ = int(id_) - 1
|
|
head = (int(head) - 1) if head != "0" else id_
|
|
dep = "ROOT" if dep == "root" else dep
|
|
tag = pos if tag == "_" else tag
|
|
tag = tag + "__" + morph if use_morphology else tag
|
|
iob = iob if iob else "O"
|
|
|
|
ids.append(id_)
|
|
words.append(word)
|
|
tags.append(tag)
|
|
heads.append(head)
|
|
deps.append(dep)
|
|
ents.append(iob)
|
|
except: # noqa: E722
|
|
print(line)
|
|
raise
|
|
example = Example(doc=None)
|
|
example.set_token_annotation(ids=ids, words=words, tags=tags,
|
|
heads=heads, deps=deps, entities=ents)
|
|
yield example
|
|
i += 1
|
|
if 1 <= n <= i:
|
|
break
|
|
|
|
|
|
def simplify_tags(iob):
|
|
"""
|
|
Simplify tags obtained from the dataset in order to follow Wikipedia
|
|
scheme (PER, LOC, ORG, MISC). 'PER', 'LOC' and 'ORG' keep their tags, while
|
|
'GPE_LOC' is simplified to 'LOC', 'GPE_ORG' to 'ORG' and all remaining tags to
|
|
'MISC'.
|
|
"""
|
|
new_iob = []
|
|
for tag in iob:
|
|
tag_match = re.match("([A-Z_]+)-([A-Z_]+)", tag)
|
|
if tag_match:
|
|
prefix = tag_match.group(1)
|
|
suffix = tag_match.group(2)
|
|
if suffix == "GPE_LOC":
|
|
suffix = "LOC"
|
|
elif suffix == "GPE_ORG":
|
|
suffix = "ORG"
|
|
elif suffix != "PER" and suffix != "LOC" and suffix != "ORG":
|
|
suffix = "MISC"
|
|
tag = prefix + "-" + suffix
|
|
new_iob.append(tag)
|
|
return new_iob
|
|
|
|
|
|
def generate_sentence(token_annotation, has_ner_tags):
|
|
sentence = {}
|
|
tokens = []
|
|
if has_ner_tags:
|
|
iob = simplify_tags(token_annotation.entities)
|
|
biluo = iob_to_biluo(iob)
|
|
for i, id in enumerate(token_annotation.ids):
|
|
token = {}
|
|
token["id"] = id
|
|
token["orth"] = token_annotation.words[i]
|
|
token["tag"] = token_annotation.tags[i]
|
|
token["head"] = token_annotation.heads[i] - id
|
|
token["dep"] = token_annotation.deps[i]
|
|
if has_ner_tags:
|
|
token["ner"] = biluo[i]
|
|
tokens.append(token)
|
|
sentence["tokens"] = tokens
|
|
return sentence
|
|
|
|
|
|
def create_doc(sentences, id):
|
|
doc = {}
|
|
paragraph = {}
|
|
doc["id"] = id
|
|
doc["paragraphs"] = []
|
|
paragraph["sentences"] = sentences
|
|
doc["paragraphs"].append(paragraph)
|
|
return doc
|