mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
83ac227bd3
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting Support semi-supervised learning in spacy train One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing. Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning. Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective. Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage: python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze Implement rehearsal methods for pipeline components The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows: Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model. Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details. Implement rehearsal updates for tagger Implement rehearsal updates for text categoriz
708 lines
23 KiB
Python
708 lines
23 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy
|
|
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
|
|
from thinc.i2v import HashEmbed, StaticVectors
|
|
from thinc.t2t import ExtractWindow, ParametricAttention
|
|
from thinc.t2v import Pooling, sum_pool, mean_pool
|
|
from thinc.misc import Residual
|
|
from thinc.misc import LayerNorm as LN
|
|
from thinc.misc import FeatureExtracter
|
|
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
|
from thinc.api import with_getitem, flatten_add_lengths
|
|
from thinc.api import uniqued, wrap, noop
|
|
from thinc.api import with_square_sequences
|
|
from thinc.linear.linear import LinearModel
|
|
from thinc.neural.ops import NumpyOps, CupyOps
|
|
from thinc.neural.util import get_array_module
|
|
from thinc.neural.optimizers import Adam
|
|
|
|
from thinc import describe
|
|
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
|
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
|
import thinc.extra.load_nlp
|
|
|
|
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
|
|
from .errors import Errors
|
|
from . import util
|
|
|
|
try:
|
|
import torch.nn
|
|
from thinc.extra.wrappers import PyTorchWrapperRNN
|
|
except ImportError:
|
|
torch = None
|
|
|
|
VECTORS_KEY = "spacy_pretrained_vectors"
|
|
|
|
|
|
def cosine(vec1, vec2):
|
|
xp = get_array_module(vec1)
|
|
norm1 = xp.linalg.norm(vec1)
|
|
norm2 = xp.linalg.norm(vec2)
|
|
if norm1 == 0.0 or norm2 == 0.0:
|
|
return 0
|
|
else:
|
|
return vec1.dot(vec2) / (norm1 * norm2)
|
|
|
|
|
|
def create_default_optimizer(ops, **cfg):
|
|
learn_rate = util.env_opt("learn_rate", 0.001)
|
|
beta1 = util.env_opt("optimizer_B1", 0.8)
|
|
beta2 = util.env_opt("optimizer_B2", 0.8)
|
|
eps = util.env_opt("optimizer_eps", 0.00001)
|
|
L2 = util.env_opt("L2_penalty", 1e-6)
|
|
max_grad_norm = util.env_opt("grad_norm_clip", 5.0)
|
|
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps)
|
|
optimizer.max_grad_norm = max_grad_norm
|
|
optimizer.device = ops.device
|
|
return optimizer
|
|
|
|
|
|
@layerize
|
|
def _flatten_add_lengths(seqs, pad=0, drop=0.0):
|
|
ops = Model.ops
|
|
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
|
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths, pad=pad)
|
|
|
|
X = ops.flatten(seqs, pad=pad)
|
|
return (X, lengths), finish_update
|
|
|
|
|
|
def _zero_init(model):
|
|
def _zero_init_impl(self, X, y):
|
|
self.W.fill(0)
|
|
|
|
model.on_data_hooks.append(_zero_init_impl)
|
|
if model.W is not None:
|
|
model.W.fill(0.0)
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def _preprocess_doc(docs, drop=0.0):
|
|
keys = [doc.to_array(LOWER) for doc in docs]
|
|
ops = Model.ops
|
|
# The dtype here matches what thinc is expecting -- which differs per
|
|
# platform (by int definition). This should be fixed once the problem
|
|
# is fixed on Thinc's side.
|
|
lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
|
keys = ops.xp.concatenate(keys)
|
|
vals = ops.allocate(keys.shape) + 1.0
|
|
return (keys, vals, lengths), None
|
|
|
|
|
|
@layerize
|
|
def _preprocess_doc_bigrams(docs, drop=0.0):
|
|
unigrams = [doc.to_array(LOWER) for doc in docs]
|
|
ops = Model.ops
|
|
bigrams = [ops.ngrams(2, doc_unis) for doc_unis in unigrams]
|
|
keys = [ops.xp.concatenate(feats) for feats in zip(unigrams, bigrams)]
|
|
keys, vals = zip(*[ops.xp.unique(k, return_counts=True) for k in keys])
|
|
# The dtype here matches what thinc is expecting -- which differs per
|
|
# platform (by int definition). This should be fixed once the problem
|
|
# is fixed on Thinc's side.
|
|
lengths = ops.asarray([arr.shape[0] for arr in keys], dtype=numpy.int_)
|
|
keys = ops.xp.concatenate(keys)
|
|
vals = ops.asarray(ops.xp.concatenate(vals), dtype="f")
|
|
return (keys, vals, lengths), None
|
|
|
|
|
|
@describe.on_data(
|
|
_set_dimensions_if_needed, lambda model, X, y: model.init_weights(model)
|
|
)
|
|
@describe.attributes(
|
|
nI=Dimension("Input size"),
|
|
nF=Dimension("Number of features"),
|
|
nO=Dimension("Output size"),
|
|
nP=Dimension("Maxout pieces"),
|
|
W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
|
|
b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)),
|
|
pad=Synapses(
|
|
"Pad",
|
|
lambda obj: (1, obj.nF, obj.nO, obj.nP),
|
|
lambda M, ops: ops.normal_init(M, 1.0),
|
|
),
|
|
d_W=Gradient("W"),
|
|
d_pad=Gradient("pad"),
|
|
d_b=Gradient("b"),
|
|
)
|
|
class PrecomputableAffine(Model):
|
|
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
|
|
Model.__init__(self, **kwargs)
|
|
self.nO = nO
|
|
self.nP = nP
|
|
self.nI = nI
|
|
self.nF = nF
|
|
|
|
def begin_update(self, X, drop=0.0):
|
|
Yf = self.ops.gemm(
|
|
X, self.W.reshape((self.nF * self.nO * self.nP, self.nI)), trans2=True
|
|
)
|
|
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
|
|
Yf = self._add_padding(Yf)
|
|
|
|
def backward(dY_ids, sgd=None):
|
|
dY, ids = dY_ids
|
|
dY, ids = self._backprop_padding(dY, ids)
|
|
Xf = X[ids]
|
|
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
|
|
|
|
self.d_b += dY.sum(axis=0)
|
|
dY = dY.reshape((dY.shape[0], self.nO * self.nP))
|
|
|
|
Wopfi = self.W.transpose((1, 2, 0, 3))
|
|
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
|
|
Wopfi = Wopfi.reshape((self.nO * self.nP, self.nF * self.nI))
|
|
dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO * self.nP)), Wopfi)
|
|
|
|
# Reuse the buffer
|
|
dWopfi = Wopfi
|
|
dWopfi.fill(0.0)
|
|
self.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
|
|
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
|
|
# (o, p, f, i) --> (f, o, p, i)
|
|
self.d_W += dWopfi.transpose((2, 0, 1, 3))
|
|
|
|
if sgd is not None:
|
|
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
|
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
|
|
|
|
return Yf, backward
|
|
|
|
def _add_padding(self, Yf):
|
|
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
|
|
return Yf_padded
|
|
|
|
def _backprop_padding(self, dY, ids):
|
|
# (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0
|
|
mask = ids < 0.0
|
|
mask = mask.sum(axis=1)
|
|
d_pad = dY * mask.reshape((ids.shape[0], 1, 1))
|
|
self.d_pad += d_pad.sum(axis=0)
|
|
return dY, ids
|
|
|
|
@staticmethod
|
|
def init_weights(model):
|
|
"""This is like the 'layer sequential unit variance', but instead
|
|
of taking the actual inputs, we randomly generate whitened data.
|
|
|
|
Why's this all so complicated? We have a huge number of inputs,
|
|
and the maxout unit makes guessing the dynamics tricky. Instead
|
|
we set the maxout weights to values that empirically result in
|
|
whitened outputs given whitened inputs.
|
|
"""
|
|
if (model.W ** 2).sum() != 0.0:
|
|
return
|
|
ops = model.ops
|
|
xp = ops.xp
|
|
ops.normal_init(model.W, model.nF * model.nI, inplace=True)
|
|
|
|
ids = ops.allocate((5000, model.nF), dtype="f")
|
|
ids += xp.random.uniform(0, 1000, ids.shape)
|
|
ids = ops.asarray(ids, dtype="i")
|
|
tokvecs = ops.allocate((5000, model.nI), dtype="f")
|
|
tokvecs += xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
|
|
tokvecs.shape
|
|
)
|
|
|
|
def predict(ids, tokvecs):
|
|
# nS ids. nW tokvecs. Exclude the padding array.
|
|
hiddens = model(tokvecs[:-1]) # (nW, f, o, p)
|
|
vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype="f")
|
|
# need nS vectors
|
|
hiddens = hiddens.reshape(
|
|
(hiddens.shape[0] * model.nF, model.nO * model.nP)
|
|
)
|
|
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
|
|
vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP))
|
|
vectors += model.b
|
|
vectors = model.ops.asarray(vectors)
|
|
if model.nP >= 2:
|
|
return model.ops.maxout(vectors)[0]
|
|
else:
|
|
return vectors * (vectors >= 0)
|
|
|
|
tol_var = 0.01
|
|
tol_mean = 0.01
|
|
t_max = 10
|
|
t_i = 0
|
|
for t_i in range(t_max):
|
|
acts1 = predict(ids, tokvecs)
|
|
var = model.ops.xp.var(acts1)
|
|
mean = model.ops.xp.mean(acts1)
|
|
if abs(var - 1.0) >= tol_var:
|
|
model.W /= model.ops.xp.sqrt(var)
|
|
elif abs(mean) >= tol_mean:
|
|
model.b -= mean
|
|
else:
|
|
break
|
|
|
|
|
|
def link_vectors_to_models(vocab):
|
|
vectors = vocab.vectors
|
|
if vectors.name is None:
|
|
vectors.name = VECTORS_KEY
|
|
if vectors.data.size != 0:
|
|
print(
|
|
"Warning: Unnamed vectors -- this won't allow multiple vectors "
|
|
"models to be loaded. (Shape: (%d, %d))" % vectors.data.shape
|
|
)
|
|
ops = Model.ops
|
|
for word in vocab:
|
|
if word.orth in vectors.key2row:
|
|
word.rank = vectors.key2row[word.orth]
|
|
else:
|
|
word.rank = 0
|
|
data = ops.asarray(vectors.data)
|
|
# Set an entry here, so that vectors are accessed by StaticVectors
|
|
# (unideal, I know)
|
|
thinc.extra.load_nlp.VECTORS[(ops.device, vectors.name)] = data
|
|
|
|
|
|
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
|
|
if depth == 0:
|
|
return layerize(noop())
|
|
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
|
|
return with_square_sequences(PyTorchWrapperRNN(model))
|
|
|
|
|
|
def Tok2Vec(width, embed_size, **kwargs):
|
|
pretrained_vectors = kwargs.get("pretrained_vectors", None)
|
|
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
|
|
subword_features = kwargs.get("subword_features", True)
|
|
conv_depth = kwargs.get("conv_depth", 4)
|
|
bilstm_depth = kwargs.get("bilstm_depth", 0)
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
with Model.define_operators(
|
|
{">>": chain, "|": concatenate, "**": clone, "+": add, "*": reapply}
|
|
):
|
|
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
|
|
if subword_features:
|
|
prefix = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
|
|
)
|
|
suffix = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
|
|
)
|
|
shape = HashEmbed(
|
|
width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
|
|
)
|
|
else:
|
|
prefix, suffix, shape = (None, None, None)
|
|
if pretrained_vectors is not None:
|
|
glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))
|
|
|
|
if subword_features:
|
|
embed = uniqued(
|
|
(glove | norm | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width * 5, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
else:
|
|
embed = uniqued(
|
|
(glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
elif subword_features:
|
|
embed = uniqued(
|
|
(norm | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width * 4, pieces=3)),
|
|
column=cols.index(ORTH),
|
|
)
|
|
else:
|
|
embed = norm
|
|
|
|
convolution = Residual(
|
|
ExtractWindow(nW=1)
|
|
>> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
|
|
)
|
|
tok2vec = FeatureExtracter(cols) >> with_flatten(
|
|
embed >> convolution ** conv_depth, pad=conv_depth
|
|
)
|
|
if bilstm_depth >= 1:
|
|
tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
|
|
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
|
tok2vec.nO = width
|
|
tok2vec.embed = embed
|
|
return tok2vec
|
|
|
|
|
|
def reapply(layer, n_times):
|
|
def reapply_fwd(X, drop=0.0):
|
|
backprops = []
|
|
for i in range(n_times):
|
|
Y, backprop = layer.begin_update(X, drop=drop)
|
|
X = Y
|
|
backprops.append(backprop)
|
|
|
|
def reapply_bwd(dY, sgd=None):
|
|
dX = None
|
|
for backprop in reversed(backprops):
|
|
dY = backprop(dY, sgd=sgd)
|
|
if dX is None:
|
|
dX = dY
|
|
else:
|
|
dX += dY
|
|
return dX
|
|
|
|
return Y, reapply_bwd
|
|
|
|
return wrap(reapply_fwd, layer)
|
|
|
|
|
|
def asarray(ops, dtype):
|
|
def forward(X, drop=0.0):
|
|
return ops.asarray(X, dtype=dtype), None
|
|
|
|
return layerize(forward)
|
|
|
|
|
|
def _divide_array(X, size):
|
|
parts = []
|
|
index = 0
|
|
while index < len(X):
|
|
parts.append(X[index : index + size])
|
|
index += size
|
|
return parts
|
|
|
|
|
|
def get_col(idx):
|
|
if idx < 0:
|
|
raise IndexError(Errors.E066.format(value=idx))
|
|
|
|
def forward(X, drop=0.0):
|
|
if isinstance(X, numpy.ndarray):
|
|
ops = NumpyOps()
|
|
else:
|
|
ops = CupyOps()
|
|
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
|
|
|
|
def backward(y, sgd=None):
|
|
dX = ops.allocate(X.shape)
|
|
dX[:, idx] += y
|
|
return dX
|
|
|
|
return output, backward
|
|
|
|
return layerize(forward)
|
|
|
|
|
|
def doc2feats(cols=None):
|
|
if cols is None:
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
|
|
def forward(docs, drop=0.0):
|
|
feats = []
|
|
for doc in docs:
|
|
feats.append(doc.to_array(cols))
|
|
return feats, None
|
|
|
|
model = layerize(forward)
|
|
model.cols = cols
|
|
return model
|
|
|
|
|
|
def print_shape(prefix):
|
|
def forward(X, drop=0.0):
|
|
return X, lambda dX, **kwargs: dX
|
|
|
|
return layerize(forward)
|
|
|
|
|
|
@layerize
|
|
def get_token_vectors(tokens_attrs_vectors, drop=0.0):
|
|
tokens, attrs, vectors = tokens_attrs_vectors
|
|
|
|
def backward(d_output, sgd=None):
|
|
return (tokens, d_output)
|
|
|
|
return vectors, backward
|
|
|
|
|
|
@layerize
|
|
def logistic(X, drop=0.0):
|
|
xp = get_array_module(X)
|
|
if not isinstance(X, xp.ndarray):
|
|
X = xp.asarray(X)
|
|
# Clip to range (-10, 10)
|
|
X = xp.minimum(X, 10.0, X)
|
|
X = xp.maximum(X, -10.0, X)
|
|
Y = 1.0 / (1.0 + xp.exp(-X))
|
|
|
|
def logistic_bwd(dY, sgd=None):
|
|
dX = dY * (Y * (1 - Y))
|
|
return dX
|
|
|
|
return Y, logistic_bwd
|
|
|
|
|
|
def zero_init(model):
|
|
def _zero_init_impl(self, X, y):
|
|
self.W.fill(0)
|
|
|
|
model.on_data_hooks.append(_zero_init_impl)
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def preprocess_doc(docs, drop=0.0):
|
|
keys = [doc.to_array([LOWER]) for doc in docs]
|
|
ops = Model.ops
|
|
lengths = ops.asarray([arr.shape[0] for arr in keys])
|
|
keys = ops.xp.concatenate(keys)
|
|
vals = ops.allocate(keys.shape[0]) + 1
|
|
return (keys, vals, lengths), None
|
|
|
|
|
|
def getitem(i):
|
|
def getitem_fwd(X, drop=0.0):
|
|
return X[i], None
|
|
|
|
return layerize(getitem_fwd)
|
|
|
|
|
|
def build_tagger_model(nr_class, **cfg):
|
|
embed_size = util.env_opt("embed_size", 2000)
|
|
if "token_vector_width" in cfg:
|
|
token_vector_width = cfg["token_vector_width"]
|
|
else:
|
|
token_vector_width = util.env_opt("token_vector_width", 96)
|
|
pretrained_vectors = cfg.get("pretrained_vectors")
|
|
subword_features = cfg.get("subword_features", True)
|
|
with Model.define_operators({">>": chain, "+": add}):
|
|
if "tok2vec" in cfg:
|
|
tok2vec = cfg["tok2vec"]
|
|
else:
|
|
tok2vec = Tok2Vec(
|
|
token_vector_width,
|
|
embed_size,
|
|
subword_features=subword_features,
|
|
pretrained_vectors=pretrained_vectors,
|
|
)
|
|
softmax = with_flatten(Softmax(nr_class, token_vector_width))
|
|
model = tok2vec >> softmax
|
|
model.nI = None
|
|
model.tok2vec = tok2vec
|
|
model.softmax = softmax
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def SpacyVectors(docs, drop=0.0):
|
|
batch = []
|
|
for doc in docs:
|
|
indices = numpy.zeros((len(doc),), dtype="i")
|
|
for i, word in enumerate(doc):
|
|
if word.orth in doc.vocab.vectors.key2row:
|
|
indices[i] = doc.vocab.vectors.key2row[word.orth]
|
|
else:
|
|
indices[i] = 0
|
|
vectors = doc.vocab.vectors.data[indices]
|
|
batch.append(vectors)
|
|
return batch, None
|
|
|
|
|
|
def build_text_classifier(nr_class, width=64, **cfg):
|
|
depth = cfg.get("depth", 2)
|
|
nr_vector = cfg.get("nr_vector", 5000)
|
|
pretrained_dims = cfg.get("pretrained_dims", 0)
|
|
with Model.define_operators({">>": chain, "+": add, "|": concatenate, "**": clone}):
|
|
if cfg.get("low_data") and pretrained_dims:
|
|
model = (
|
|
SpacyVectors
|
|
>> flatten_add_lengths
|
|
>> with_getitem(0, Affine(width, pretrained_dims))
|
|
>> ParametricAttention(width)
|
|
>> Pooling(sum_pool)
|
|
>> Residual(ReLu(width, width)) ** 2
|
|
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
|
>> logistic
|
|
)
|
|
return model
|
|
|
|
lower = HashEmbed(width, nr_vector, column=1)
|
|
prefix = HashEmbed(width // 2, nr_vector, column=2)
|
|
suffix = HashEmbed(width // 2, nr_vector, column=3)
|
|
shape = HashEmbed(width // 2, nr_vector, column=4)
|
|
|
|
trained_vectors = FeatureExtracter(
|
|
[ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
|
|
) >> with_flatten(
|
|
uniqued(
|
|
(lower | prefix | suffix | shape)
|
|
>> LN(Maxout(width, width + (width // 2) * 3)),
|
|
column=0,
|
|
)
|
|
)
|
|
|
|
if pretrained_dims:
|
|
static_vectors = SpacyVectors >> with_flatten(
|
|
Affine(width, pretrained_dims)
|
|
)
|
|
# TODO Make concatenate support lists
|
|
vectors = concatenate_lists(trained_vectors, static_vectors)
|
|
vectors_width = width * 2
|
|
else:
|
|
vectors = trained_vectors
|
|
vectors_width = width
|
|
static_vectors = None
|
|
tok2vec = vectors >> with_flatten(
|
|
LN(Maxout(width, vectors_width))
|
|
>> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth,
|
|
pad=depth,
|
|
)
|
|
cnn_model = (
|
|
tok2vec
|
|
>> flatten_add_lengths
|
|
>> ParametricAttention(width)
|
|
>> Pooling(sum_pool)
|
|
>> Residual(zero_init(Maxout(width, width)))
|
|
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
|
)
|
|
|
|
linear_model = _preprocess_doc >> LinearModel(nr_class)
|
|
model = (
|
|
(linear_model | cnn_model)
|
|
>> zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0))
|
|
>> logistic
|
|
)
|
|
model.tok2vec = tok2vec
|
|
model.nO = nr_class
|
|
model.lsuv = False
|
|
return model
|
|
|
|
|
|
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=True, **cfg):
|
|
"""
|
|
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
|
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
|
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
|
is applied instead, so that outputs are in the range [0, 1].
|
|
"""
|
|
with Model.define_operators({">>": chain}):
|
|
if exclusive_classes:
|
|
output_layer = Softmax(nr_class, tok2vec.nO)
|
|
else:
|
|
output_layer = zero_init(Affine(nr_class, tok2vec.nO)) >> logistic
|
|
model = tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> output_layer
|
|
model.tok2vec = chain(tok2vec, flatten)
|
|
model.nO = nr_class
|
|
return model
|
|
|
|
|
|
@layerize
|
|
def flatten(seqs, drop=0.0):
|
|
ops = Model.ops
|
|
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
|
|
|
def finish_update(d_X, sgd=None):
|
|
return ops.unflatten(d_X, lengths, pad=0)
|
|
|
|
X = ops.flatten(seqs, pad=0)
|
|
return X, finish_update
|
|
|
|
|
|
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
|
"""Compose two or more models `f`, `g`, etc, such that their outputs are
|
|
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
|
"""
|
|
if not layers:
|
|
return noop()
|
|
drop_factor = kwargs.get("drop_factor", 1.0)
|
|
ops = layers[0].ops
|
|
layers = [chain(layer, flatten) for layer in layers]
|
|
concat = concatenate(*layers)
|
|
|
|
def concatenate_lists_fwd(Xs, drop=0.0):
|
|
drop *= drop_factor
|
|
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
|
|
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
|
ys = ops.unflatten(flat_y, lengths)
|
|
|
|
def concatenate_lists_bwd(d_ys, sgd=None):
|
|
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
|
|
|
return ys, concatenate_lists_bwd
|
|
|
|
model = wrap(concatenate_lists_fwd, concat)
|
|
return model
|
|
|
|
|
|
def masked_language_model(vocab, model, mask_prob=0.15):
|
|
"""Convert a model into a BERT-style masked language model"""
|
|
|
|
random_words = _RandomWords(vocab)
|
|
|
|
def mlm_forward(docs, drop=0.0):
|
|
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
|
|
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
|
|
output, backprop = model.begin_update(docs, drop=drop)
|
|
|
|
def mlm_backward(d_output, sgd=None):
|
|
d_output *= 1 - mask
|
|
return backprop(d_output, sgd=sgd)
|
|
|
|
return output, mlm_backward
|
|
|
|
return wrap(mlm_forward, model)
|
|
|
|
|
|
class _RandomWords(object):
|
|
def __init__(self, vocab):
|
|
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
|
|
self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
|
|
self.words = self.words[:10000]
|
|
self.probs = self.probs[:10000]
|
|
self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
|
|
self.probs /= self.probs.sum()
|
|
self._cache = []
|
|
|
|
def next(self):
|
|
if not self._cache:
|
|
self._cache.extend(
|
|
numpy.random.choice(len(self.words), 10000, p=self.probs)
|
|
)
|
|
index = self._cache.pop()
|
|
return self.words[index]
|
|
|
|
|
|
def _apply_mask(docs, random_words, mask_prob=0.15):
|
|
# This needs to be here to avoid circular imports
|
|
from .tokens.doc import Doc
|
|
|
|
N = sum(len(doc) for doc in docs)
|
|
mask = numpy.random.uniform(0.0, 1.0, (N,))
|
|
mask = mask >= mask_prob
|
|
i = 0
|
|
masked_docs = []
|
|
for doc in docs:
|
|
words = []
|
|
for token in doc:
|
|
if not mask[i]:
|
|
word = _replace_word(token.text, random_words)
|
|
else:
|
|
word = token.text
|
|
words.append(word)
|
|
i += 1
|
|
spaces = [bool(w.whitespace_) for w in doc]
|
|
# NB: If you change this implementation to instead modify
|
|
# the docs in place, take care that the IDs reflect the original
|
|
# words. Currently we use the original docs to make the vectors
|
|
# for the target, so we don't lose the original tokens. But if
|
|
# you modified the docs in place here, you would.
|
|
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
|
|
return mask, masked_docs
|
|
|
|
|
|
def _replace_word(word, random_words, mask="[MASK]"):
|
|
roll = numpy.random.random()
|
|
if roll < 0.8:
|
|
return mask
|
|
elif roll < 0.9:
|
|
return random_words.next()
|
|
else:
|
|
return word
|