mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			196 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding: utf-8
 | |
| from __future__ import unicode_literals
 | |
| 
 | |
| from spacy.vocab import Vocab
 | |
| from spacy.tokens import Doc
 | |
| import pytest
 | |
| 
 | |
| from ..util import get_doc
 | |
| 
 | |
| 
 | |
| def test_spans_merge_tokens(en_tokenizer):
 | |
|     text = "Los Angeles start."
 | |
|     heads = [1, 1, 0, -1]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | |
|     assert len(doc) == 4
 | |
|     assert doc[0].head.text == "Angeles"
 | |
|     assert doc[1].head.text == "start"
 | |
|     doc.merge(0, len("Los Angeles"), tag="NNP", lemma="Los Angeles", ent_type="GPE")
 | |
|     assert len(doc) == 3
 | |
|     assert doc[0].text == "Los Angeles"
 | |
|     assert doc[0].head.text == "start"
 | |
| 
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | |
|     assert len(doc) == 4
 | |
|     assert doc[0].head.text == "Angeles"
 | |
|     assert doc[1].head.text == "start"
 | |
|     doc.merge(0, len("Los Angeles"), tag="NNP", lemma="Los Angeles", label="GPE")
 | |
| 
 | |
|     assert len(doc) == 3
 | |
|     assert doc[0].text == "Los Angeles"
 | |
|     assert doc[0].head.text == "start"
 | |
|     assert doc[0].ent_type_ == "GPE"
 | |
| 
 | |
| 
 | |
| def test_spans_merge_heads(en_tokenizer):
 | |
|     text = "I found a pilates class near work."
 | |
|     heads = [1, 0, 2, 1, -3, -1, -1, -6]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | |
|     assert len(doc) == 8
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         attrs = {"tag": doc[4].tag_, "lemma": "pilates class", "ent_type": "O"}
 | |
|         retokenizer.merge(doc[3:5], attrs=attrs)
 | |
|     assert len(doc) == 7
 | |
|     assert doc[0].head.i == 1
 | |
|     assert doc[1].head.i == 1
 | |
|     assert doc[2].head.i == 3
 | |
|     assert doc[3].head.i == 1
 | |
|     assert doc[4].head.i in [1, 3]
 | |
|     assert doc[5].head.i == 4
 | |
| 
 | |
| 
 | |
| def test_spans_merge_non_disjoint(en_tokenizer):
 | |
|     text = "Los Angeles start."
 | |
|     doc = en_tokenizer(text)
 | |
|     with pytest.raises(ValueError):
 | |
|         with doc.retokenize() as retokenizer:
 | |
|             retokenizer.merge(
 | |
|                 doc[0:2],
 | |
|                 attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
 | |
|             )
 | |
|             retokenizer.merge(
 | |
|                 doc[0:1],
 | |
|                 attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
 | |
|             )
 | |
| 
 | |
| 
 | |
| def test_span_np_merges(en_tokenizer):
 | |
|     text = "displaCy is a parse tool built with Javascript"
 | |
|     heads = [1, 0, 2, 1, -3, -1, -1, -1]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | |
| 
 | |
|     assert doc[4].head.i == 1
 | |
|     doc.merge(
 | |
|         doc[2].idx, doc[4].idx + len(doc[4]), tag="NP", lemma="tool", ent_type="O"
 | |
|     )
 | |
|     assert doc[2].head.i == 1
 | |
| 
 | |
|     text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
 | |
|     heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | |
| 
 | |
|     ents = [(e[0].idx, e[-1].idx + len(e[-1]), e.label_, e.lemma_) for e in doc.ents]
 | |
|     for start, end, label, lemma in ents:
 | |
|         merged = doc.merge(start, end, tag=label, lemma=lemma, ent_type=label)
 | |
|         assert merged is not None, (start, end, label, lemma)
 | |
| 
 | |
|     text = "One test with entities like New York City so the ents list is not void"
 | |
|     heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2]
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads)
 | |
|     for span in doc.ents:
 | |
|         merged = doc.merge()
 | |
|         assert merged is not None, (span.start, span.end, span.label_, span.lemma_)
 | |
| 
 | |
| 
 | |
| def test_spans_entity_merge(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
 | |
|     heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1]
 | |
|     tags = ["NNP", "NNP", "VBZ", "DT", "VB", "RP", "NN", "WP", "VBZ", "IN", "NNP", "CC", "VBZ", "NNP", "NNP", ".", "SP"]
 | |
|     ents = [(0, 2, "PERSON"), (10, 11, "GPE"), (13, 15, "PERSON")]
 | |
|     # fmt: on
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(
 | |
|         tokens.vocab, words=[t.text for t in tokens], heads=heads, tags=tags, ents=ents
 | |
|     )
 | |
|     assert len(doc) == 17
 | |
|     for ent in doc.ents:
 | |
|         label, lemma, type_ = (
 | |
|             ent.root.tag_,
 | |
|             ent.root.lemma_,
 | |
|             max(w.ent_type_ for w in ent),
 | |
|         )
 | |
|         ent.merge(label=label, lemma=lemma, ent_type=type_)
 | |
|     # check looping is ok
 | |
|     assert len(doc) == 15
 | |
| 
 | |
| 
 | |
| def test_spans_entity_merge_iob():
 | |
|     # Test entity IOB stays consistent after merging
 | |
|     words = ["a", "b", "c", "d", "e"]
 | |
|     doc = Doc(Vocab(), words=words)
 | |
|     doc.ents = [
 | |
|         (doc.vocab.strings.add("ent-abc"), 0, 3),
 | |
|         (doc.vocab.strings.add("ent-d"), 3, 4),
 | |
|     ]
 | |
|     assert doc[0].ent_iob_ == "B"
 | |
|     assert doc[1].ent_iob_ == "I"
 | |
|     assert doc[2].ent_iob_ == "I"
 | |
|     assert doc[3].ent_iob_ == "B"
 | |
|     doc[0:1].merge()
 | |
|     assert doc[0].ent_iob_ == "B"
 | |
|     assert doc[1].ent_iob_ == "I"
 | |
| 
 | |
|     words = ["a", "b", "c", "d", "e", "f", "g", "h", "i"]
 | |
|     doc = Doc(Vocab(), words=words)
 | |
|     doc.ents = [
 | |
|         (doc.vocab.strings.add("ent-de"), 3, 5),
 | |
|         (doc.vocab.strings.add("ent-fg"), 5, 7),
 | |
|     ]
 | |
|     assert doc[3].ent_iob_ == "B"
 | |
|     assert doc[4].ent_iob_ == "I"
 | |
|     assert doc[5].ent_iob_ == "B"
 | |
|     assert doc[6].ent_iob_ == "I"
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         retokenizer.merge(doc[2:4])
 | |
|         retokenizer.merge(doc[4:6])
 | |
|         retokenizer.merge(doc[7:9])
 | |
|     for token in doc:
 | |
|         print(token)
 | |
|         print(token.ent_iob)
 | |
|     assert len(doc) == 6
 | |
|     assert doc[3].ent_iob_ == "B"
 | |
|     assert doc[4].ent_iob_ == "I"
 | |
| 
 | |
| 
 | |
| def test_spans_sentence_update_after_merge(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
 | |
|     heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7]
 | |
|     deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
 | |
|             'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
 | |
|             'compound', 'dobj', 'punct']
 | |
|     # fmt: on
 | |
| 
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     sent1, sent2 = list(doc.sents)
 | |
|     init_len = len(sent1)
 | |
|     init_len2 = len(sent2)
 | |
|     doc[0:2].merge(label="none", lemma="none", ent_type="none")
 | |
|     doc[-2:].merge(label="none", lemma="none", ent_type="none")
 | |
|     assert len(sent1) == init_len - 1
 | |
|     assert len(sent2) == init_len2 - 1
 | |
| 
 | |
| 
 | |
| def test_spans_subtree_size_check(en_tokenizer):
 | |
|     # fmt: off
 | |
|     text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
 | |
|     heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2]
 | |
|     deps = ["compound", "nsubj", "ROOT", "det", "amod", "prt", "attr",
 | |
|             "nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound",
 | |
|             "dobj"]
 | |
|     # fmt: on
 | |
| 
 | |
|     tokens = en_tokenizer(text)
 | |
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | |
|     sent1 = list(doc.sents)[0]
 | |
|     init_len = len(list(sent1.root.subtree))
 | |
|     doc[0:2].merge(label="none", lemma="none", ent_type="none")
 | |
|     assert len(list(sent1.root.subtree)) == init_len - 1
 |